This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 84
152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151772-Thumbnail Image.png
Description
Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher thermal stresses on them, giving rise to durability concern. Ingestion is usually reduced by installing

Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher thermal stresses on them, giving rise to durability concern. Ingestion is usually reduced by installing seals on the rotor and stator rims and by purging the disk cavity by secondary air bled from the compressor discharge. The geometry of the rim seals and the secondary air flow rate, together, influence the amount of gas that gets ingested into the cavities. Since the amount of secondary air bled off has a negative effect on the gas turbine thermal efficiency, one goal is to use the least possible amount of secondary air. This requires a good understanding of the flow and ingestion fields within a disk cavity. In the present study, the mainstream gas ingestion phenomenon has been experimentally studied in a model single-stage axial flow gas turbine. The turbine stage featured vanes and blades, and rim seals on both the rotor and stator. Additionally, the disk cavity contained a labyrinth seal radially inboard which effectively divided the cavity into a rim cavity and an inner cavity. Time-average static pressure measurements were obtained at various radial positions within the disk cavity, and in the mainstream gas path at three axial locations at the outer shroud spread circumferentially over two vane pitches. The time-average static pressure in the main gas path exhibited a periodic asymmetry following the vane pitch whose amplitude diminished with increasing distance from the vane trailing edge. The static pressure distribution increased with the secondary air flow rate within the inner cavity but was found to be almost independent of it in the rim cavity. Tracer gas (CO2) concentration measurements were conducted to determine the sealing effectiveness of the rim seals against main gas ingestion. For the rim cavity, the sealing effectiveness increased with the secondary air flow rate. Within the inner cavity however, this trend reversed -this may have been due to the presence of rotating low-pressure flow structures inboard of the labyrinth seal.
ContributorsThiagarajan, Jayanth kumar (Author) / Roy, Ramendra P (Thesis advisor) / Lee, Taewoo (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2013
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
152349-Thumbnail Image.png
Description
As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.
ContributorsWang, Yuting (Author) / Artemiadis, Panagiotis (Thesis advisor) / Mignolet, Marc (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
153325-Thumbnail Image.png
Description
The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it

The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it has had less effect in minimizing mTBI. The latest research in brain injury mechanisms has established that the current design methodology has produced a helmet to reduce linear acceleration of the head. However, angular accelerations also have an adverse effect on the brain response, and must be investigated as a contributor of brain injury.

To help better understand how the football helmet design features effect the brain response during impact, this research develops a validated football helmet model and couples it with a full LS-DYNA human body model developed by the Global Human Body Modeling Consortium (v4.1.1). The human body model is a conglomeration of several validated models of different sections of the body. Of particular interest for this research is the Wayne State University Head Injury Model for modeling the brain. These human body models were validated using a combination of cadaveric and animal studies. In this study, the football helmet was validated by laboratory testing using drop tests on the crown of the helmet. By coupling the two models into one finite element model, the brain response to impact loads caused by helmet design features can be investigated. In the present research, LS-DYNA is used to study a helmet crown impact with a rigid steel plate so as to obtain the strain-rate, strain, and stress experienced in the corpus callosum, midbrain, and brain stem as these anatomical regions are areas of concern with respect to mTBI.
ContributorsDarling, Timothy (Author) / Rajan, Subramaniam D. (Thesis advisor) / Muthuswamy, Jitendran (Thesis advisor) / Oswald, Jay (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2014
153244-Thumbnail Image.png
Description
Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover

Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover some of the wasted

heat. Thermal conductivity measurement systems are an important part of the char-

acterization processes of thermoelectric materials. These systems must possess the

capability of accurately measuring the thermal conductivity of both bulk and thin-lm

samples at dierent ambient temperatures.

This paper discusses the construction, validation, and improvement of a thermal

conductivity measurement platform based on the 3-Omega technique. Room temperature

measurements of thermal conductivity done on control samples with known properties

such as undoped bulk silicon (Si), bulk gallium arsenide (GaAs), and silicon dioxide

(SiO2) thin lms yielded 150 W=m􀀀K, 50 W=m􀀀K, and 1:46 W=m􀀀K respectively.

These quantities were all within 8% of literature values. In addition, the thermal

conductivity of bulk SiO2 was measured as a function of temperature in a Helium-

4 cryostat from 75K to 250K. The results showed good agreement with literature

values that all fell within the error range of each measurement. The uncertainty in

the measurements ranged from 19% at 75K to 30% at 250K. Finally, the system

was used to measure the room temperature thermal conductivity of a nanocomposite

composed of cadmium selenide, CdSe, nanocrystals in an indium selenide, In2Se3,

matrix as a function of the concentration of In2Se3. The observed trend was in

qualitative agreement with the expected behavior.

i
ContributorsJaber, Abbas (Author) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2014
150196-Thumbnail Image.png
Description
Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel

Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel homogenization based multiscale modeling framework using semi-analytical micromechanics is presented to simulate the response of textile composites. The novelty of this approach lies in the three scale homogenization/localization framework bridging between the constituent (micro), the fiber tow scale (meso), weave scale (macro), and the global response. The multiscale framework, named Multiscale Generalized Method of Cells (MSGMC), continuously bridges between the micro to the global scale as opposed to approaches that are top-down and bottom-up. This framework is fully generalized and capable of modeling several different weave and braids without reformulation. Particular emphasis in this dissertation is placed on modeling the nonlinearity and failure of both polymer matrix and ceramic matrix composites.
ContributorsLiu, Guang (Author) / Chattopadhyay, Aditi (Thesis advisor) / Mignolet, Marc (Committee member) / Jiang, Hanqing (Committee member) / Li, Jian (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
151166-Thumbnail Image.png
Description
High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam

High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam turbine. During cold start-ups, rapid temperature changes in operating condition give rise to significant temperature gradients in the thick-walled components of HPSH1 (manifolds, links, and headers). These temperature gradients produce thermal-structural stresses in the components. The resulting high cycle fatigue is a major concern as this can lead to premature failure of the components. The main objective of this project was to address the thermal-structural stress field induced in HPSH1 during a typical cold start-up transient. To this end, computational fluid dynamics (CFD) was used to carry out the thermal-fluid analysis of HPSH1. The calculated temperature distributions in the component walls were the primary inputs for the finite element (FEA) model that performed structural analysis. Thermal-structural analysis was initially carried out at full-load steady state condition in order to gain confidence in the CFD and FEA methodologies. Results of the full-load steady state thermal-fluid analysis were found in agreement with the temperature values measured at specific locations on the outer surfaces of the inlet links and outlet manifold. It was found from the subsequent structural analysis that peak effective stresses were located at the connecting regions of the components and were well below the allowed stress values. Higher temperature differences were observed between the thick-walled HPSH1 components during the cold start-up transient as compared to the full-load steady state operating condition. This was because of the rapid temperature changes that occurred, especially in the steam temperature at the HPSH1 entry, and the different rates of heating or cooling for components with different wall thicknesses. Results of the transient thermal-fluid analysis will be used in future to perform structural analysis of the HPSH1. The developed CFD and FEA models are capable of analyzing various other transients (e.g., hot start-up and shut-down) and determine their influence on the durability of plant components.
ContributorsHardeep Singh (Author) / Roy, Ramendra P. (Thesis advisor) / Lee, Taewoo (Thesis advisor) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2012
150547-Thumbnail Image.png
Description
This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry questions relating to the introduction of lead-free solder product and processes into high reliability avionics. In chapter 2, thermal ALT using an industry standard failure machine implementing Interconnect Stress Test (IST) that simulates circuit board life data is compared to real production failure data by likelihood ratio tests to arrive at a mechanical theory. This mechanical theory results in a statistically equivalent energy bound such that failure distributions below a specific energy level are considered to be from the same distribution thus allowing testers to quantify parameter setting in IST prior to life testing. In chapter 3, vibration ALT comparing tin-lead and lead-free circuit board solder designs involves the use of the likelihood ratio (LR) test to assess both complete failure data and S-N curves to present methods for analyzing data. Failure data is analyzed using Regression and two-way analysis of variance (ANOVA) and reconciled with the LR test results that indicating that a costly aging pre-process may be eliminated in certain cases. In chapter 4, vibration ALT for side-by-side tin-lead and lead-free solder black box designs are life tested. Commercial models from strain data do not exist at the low levels associated with life testing and need to be developed because testing performed and presented here indicate that both tin-lead and lead-free solders are similar. In addition, earlier failures due to vibration like connector failure modes will occur before solder interconnect failures.
ContributorsJuarez, Joseph Moses (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie M. (Thesis advisor) / Gel, Esma (Committee member) / Mignolet, Marc (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012