This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 74
152030-Thumbnail Image.png
Description
Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the

Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the interface that result in high interfacial strength. First, molecular dynamics (MD) simulations are performed to calculate the adhesive energy between bare carbon and ZnO. Since the carbon fiber surface has oxygen functional groups, these were modeled and MD simulations showed the preference of ketones to strongly interact with ZnO, however, this was not observed in the case of hydroxyls and carboxylic acid. It was also found that the ketone molecules ability to change orientation facilitated the interactions with the ZnO surface. Experimentally, the atomic force microscope (AFM) was used to measure the adhesive energy between ZnO and carbon through a liftoff test by employing highly oriented pyrolytic graphite (HOPG) substrate and a ZnO covered AFM tip. Oxygen functionalization of the HOPG surface shows the increase of adhesive energy. Additionally, the surface of ZnO was modified to hold a negative charge, which demonstrated an increase in the adhesive energy. This increase in adhesion resulted from increased induction forces given the relatively high polarizability of HOPG and the preservation of the charge on ZnO surface. It was found that the additional negative charge can be preserved on the ZnO surface because there is an energy barrier since carbon and ZnO form a Schottky contact. Other materials with the same ionic properties of ZnO but with higher polarizability also demonstrated good adhesion to carbon. This result substantiates that their induced interaction can be facilitated not only by the polarizability of carbon but by any of the materials at the interface. The versatility to modify the magnitude of the induced interaction between carbon and an ionic material provides a new route to create interfaces with controlled interfacial strength.
ContributorsGalan Vera, Magdian Ulises (Author) / Sodano, Henry A (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2013
151341-Thumbnail Image.png
Description
With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.
ContributorsKondaveeti, Anirudh (Author) / Runger, George C. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2012
151349-Thumbnail Image.png
Description
This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and

This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and geovisualization techniques. Three different types of spatiotemporal activity data were collected through different data collection approaches: (1) crowd sourced geo-tagged digital photos, representing people's travel activity, were retrieved from the website Panoramio.com through information retrieval techniques; (2) the same techniques were used to crawl crowd sourced GPS trajectory data and related metadata of their daily activities from the website OpenStreetMap.org; and finally (3) preschool children's daily activities and interactions tagged with time and geographical location were collected with a novel TabletPC-based behavioral coding system. The proposed methodology is applied to these data to (1) automatically recommend optimal multi-day and multi-stay travel itineraries for travelers based on discovered attractions from geo-tagged photos, (2) automatically detect movement types of unknown moving objects from GPS trajectories, and (3) explore dynamic social and socio-spatial patterns of preschool children's behavior from both geographic and social perspectives.
ContributorsLi, Xun (Author) / Anselin, Luc (Thesis advisor) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Rey, Sergio (Committee member) / Griffin, William (Committee member) / Arizona State University (Publisher)
Created2012
151278-Thumbnail Image.png
Description
This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the

This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the NVIDIA CUDA framework; however, the proposed solution in this document uses the Microsoft general-purpose computing on graphics processing units API. The implementation allows for the simulation of a large number of particles in a real-time scenario. The solution presented here uses the Smoothed Particles Hydrodynamics algorithm to calculate the forces within the fluid; this algorithm provides a Lagrangian approach for discretizes the Navier-Stockes equations into a set of particles. Our solution uses the DirectCompute compute shaders to evaluate each particle using the multithreading and multi-core capabilities of the GPU increasing the overall performance. The solution then describes a method for extracting the fluid surface using the Marching Cubes method and the programmable interfaces exposed by the DirectX pipeline. Particularly, this document presents a method for using the Geometry Shader Stage to generate the triangle mesh as defined by the Marching Cubes method. The implementation results show the ability to simulate over 64K particles at a rate of 900 and 400 frames per second, not including the surface reconstruction steps and including the Marching Cubes steps respectively.
ContributorsFigueroa, Gustavo (Author) / Farin, Gerald (Thesis advisor) / Maciejewski, Ross (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2012
151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
152300-Thumbnail Image.png
Description
In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set of 3D morphological differences in the corpus callosum between two groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and inferior patches on which we compute a volumetric harmonic field by solving the Laplace's equation with Dirichlet boundary conditions. We adopt a refined tetrahedral mesh to compute the Laplacian operator, so our computation can achieve sub-voxel accuracy. Thickness is estimated by tracing the streamlines in the harmonic field. We combine areal changes found using surface tensor-based morphometry and thickness information into a vector at each vertex to be used as a metric for the statistical analysis. Group differences are assessed on this combined measure through Hotelling's T2 test. The method is applied to statistically compare three groups consisting of: congenitally blind (CB), late blind (LB; onset > 8 years old) and sighted (SC) subjects. Our results reveal significant differences in several regions of the CC between both blind groups and the sighted groups; and to a lesser extent between the LB and CB groups. These results demonstrate the crucial role of visual deprivation during the developmental period in reshaping the structural architecture of the CC.
ContributorsXu, Liang (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
153495-Thumbnail Image.png
Description
Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the

Recent studies of the occurrence of post-flutter limit cycle oscillations (LCO) of the F-16 have provided good support to the long-standing hypothesis that this phenomenon involves a nonlinear structural damping. A potential mechanism for the appearance of nonlinearity in the damping are the nonlinear geometric effects that arise when the deformations become large enough to exceed the linear regime. In this light, the focus of this investigation is first on extending nonlinear reduced order modeling (ROM) methods to include viscoelasticity which is introduced here through a linear Kelvin-Voigt model in the undeformed configuration. Proceeding with a Galerkin approach, the ROM governing equations of motion are obtained and are found to be of a generalized van der Pol-Duffing form with parameters depending on the structure and the chosen basis functions. An identification approach of the nonlinear damping parameters is next proposed which is applicable to structures modeled within commercial finite element software.

The effects of this nonlinear damping mechanism on the post-flutter response is next analyzed on the Goland wing through time-marching of the aeroelastic equations comprising a rational fraction approximation of the linear aerodynamic forces. It is indeed found that the nonlinearity in the damping can stabilize the unstable aerodynamics and lead to finite amplitude limit cycle oscillations even when the stiffness related nonlinear geometric effects are neglected. The incorporation of these latter effects in the model is found to further decrease the amplitude of LCO even though the dominant bending motions do not seem to stiffen as the level of displacements is increased in static analyses.
ContributorsSong, Pengchao (Author) / Mignolet, Marc P (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2015
153427-Thumbnail Image.png
Description
Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected

Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected by first responders on the ground in the affected region or by official agencies such as local governments involved in the response. However, the ubiquity of mobile devices has empowered people to publish information during a crisis through social media, such as the damage reports from a hurricane. Social media has thus emerged as an important channel of information which can be leveraged to improve crisis response. Twitter is a popular medium which has been employed in recent crises. However, it presents new challenges: the data is noisy and uncurated, and it has high volume and high velocity. In this work, I study four key problems in the use of social media for crisis response: effective monitoring and analysis of high volume crisis tweets, detecting crisis events automatically in streaming data, identifying users who can be followed to effectively monitor crisis, and finally understanding user behavior during crisis to detect tweets inside crisis regions. To address these problems I propose two systems which assist disaster responders or analysts to collaboratively collect tweets related to crisis and analyze it using visual analytics to identify interesting regions, topics, and users involved in disaster response. I present a novel approach to detecting crisis events automatically in noisy, high volume Twitter streams. I also investigate and introduce novel methods to tackle information overload through the identification of information leaders in information diffusion who can be followed for efficient crisis monitoring and identification of messages originating from crisis regions using user behavior analysis.
ContributorsKumar, Shamanth (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Maciejewski, Ross (Committee member) / Agarwal, Nitin (Committee member) / Arizona State University (Publisher)
Created2015
153433-Thumbnail Image.png
Description
The apolipoprotein E (APOE) e4 genotype is the most prevalent known genetic risk factor for Alzheimer's disease (AD). In this paper, we examined the longitudinal effect of APOE e4 on hippocampal morphometry in Alzheimer's Disease Neuroimaging Initiative (ADNI). Generally, atrophy of hippocampus has more chance occurs in AD patients who

The apolipoprotein E (APOE) e4 genotype is the most prevalent known genetic risk factor for Alzheimer's disease (AD). In this paper, we examined the longitudinal effect of APOE e4 on hippocampal morphometry in Alzheimer's Disease Neuroimaging Initiative (ADNI). Generally, atrophy of hippocampus has more chance occurs in AD patients who carrying the APOE e4 allele than those who are APOE e4 noncarriers. Also, brain structure and function depend on APOE genotype not just for Alzheimer's disease patients but also in health elderly individuals, so APOE genotyping is considered critical in clinical trials of Alzheimer's disease. We used a large sample of elderly participants, with the help of a new automated surface registration system based on surface conformal parameterization with holomorphic 1-forms and surface fluid registration. In this system, we automatically segmented and constructed hippocampal surfaces from MR images at many different time points, such as 6 months, 1- and 2-year follow up. Between the two different hippocampal surfaces, we did the high-order correspondences, using a novel inverse consistent surface fluid registration method. At each time point, using Hotelling's T^2 test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the non-demented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes.
ContributorsLi, Bolun (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2015
153325-Thumbnail Image.png
Description
The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it

The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it has had less effect in minimizing mTBI. The latest research in brain injury mechanisms has established that the current design methodology has produced a helmet to reduce linear acceleration of the head. However, angular accelerations also have an adverse effect on the brain response, and must be investigated as a contributor of brain injury.

To help better understand how the football helmet design features effect the brain response during impact, this research develops a validated football helmet model and couples it with a full LS-DYNA human body model developed by the Global Human Body Modeling Consortium (v4.1.1). The human body model is a conglomeration of several validated models of different sections of the body. Of particular interest for this research is the Wayne State University Head Injury Model for modeling the brain. These human body models were validated using a combination of cadaveric and animal studies. In this study, the football helmet was validated by laboratory testing using drop tests on the crown of the helmet. By coupling the two models into one finite element model, the brain response to impact loads caused by helmet design features can be investigated. In the present research, LS-DYNA is used to study a helmet crown impact with a rigid steel plate so as to obtain the strain-rate, strain, and stress experienced in the corpus callosum, midbrain, and brain stem as these anatomical regions are areas of concern with respect to mTBI.
ContributorsDarling, Timothy (Author) / Rajan, Subramaniam D. (Thesis advisor) / Muthuswamy, Jitendran (Thesis advisor) / Oswald, Jay (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2014