This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 115
151718-Thumbnail Image.png
Description
The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.
ContributorsRavikumar, Srijith (Author) / Kambhampati, Subbarao (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
152112-Thumbnail Image.png
Description
With the advent of social media (like Twitter, Facebook etc.,) people are easily sharing their opinions, sentiments and enforcing their ideologies on others like never before. Even people who are otherwise socially inactive would like to share their thoughts on current affairs by tweeting and sharing news feeds with their

With the advent of social media (like Twitter, Facebook etc.,) people are easily sharing their opinions, sentiments and enforcing their ideologies on others like never before. Even people who are otherwise socially inactive would like to share their thoughts on current affairs by tweeting and sharing news feeds with their friends and acquaintances. In this thesis study, we chose Twitter as our main data platform to analyze shifts and movements of 27 political organizations in Indonesia. So far, we have collected over 30 million tweets and 150,000 news articles from RSS feeds of the corresponding organizations for our analysis. For Twitter data extraction, we developed a multi-threaded application which seamlessly extracts, cleans and stores millions of tweets matching our keywords from Twitter Streaming API. For keyword extraction, we used topics and perspectives which were extracted using n-grams techniques and later approved by our social scientists. After the data is extracted, we aggregate the tweet contents that belong to every user on a weekly basis. Finally, we applied linear and logistic regression using SLEP, an open source sparse learning package to compute weekly score for users and mapping them to one of the 27 organizations on a radical or counter radical scale. Since, we are mapping users to organizations on a weekly basis, we are able to track user's behavior and important new events that triggered shifts among users between organizations. This thesis study can further be extended to identify topics and organization specific influential users and new users from various social media platforms like Facebook, YouTube etc. can easily be mapped to existing organizations on a radical or counter-radical scale.
ContributorsPoornachandran, Sathishkumar (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2013
151867-Thumbnail Image.png
Description
Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where mentions of entities such as proteins and diseases are located

Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where mentions of entities such as proteins and diseases are located within natural-language text and their semantic type is determined. This step is critical for later tasks in an information extraction pipeline, including normalization and relationship extraction. BANNER is a benchmark biomedical NER system using linear-chain conditional random fields and the rich feature set approach. A case study with BANNER locating genes and proteins in biomedical literature is described. The first corpus for disease NER adequate for use as training data is introduced, and employed in a case study of disease NER. The first corpus locating adverse drug reactions (ADRs) in user posts to a health-related social website is also described, and a system to locate and identify ADRs in social media text is created and evaluated. The rich feature set approach to creating NER feature sets is argued to be subject to diminishing returns, implying that additional improvements may require more sophisticated methods for creating the feature set. This motivates the first application of multivariate feature selection with filters and false discovery rate analysis to biomedical NER, resulting in a feature set at least 3 orders of magnitude smaller than the set created by the rich feature set approach. Finally, two novel approaches to NER by modeling the semantics of token sequences are introduced. The first method focuses on the sequence content by using language models to determine whether a sequence resembles entries in a lexicon of entity names or text from an unlabeled corpus more closely. The second method models the distributional semantics of token sequences, determining the similarity between a potential mention and the token sequences from the training data by analyzing the contexts where each sequence appears in a large unlabeled corpus. The second method is shown to improve the performance of BANNER on multiple data sets.
ContributorsLeaman, James Robert (Author) / Gonzalez, Graciela (Thesis advisor) / Baral, Chitta (Thesis advisor) / Cohen, Kevin B (Committee member) / Liu, Huan (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151275-Thumbnail Image.png
Description
The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to

The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to an earn-as-you-go profit model for many cloud based applications. These applications can benefit from low level analyses for cost optimization and verification. Testing cloud applications to ensure they meet monetary cost objectives has not been well explored in the current literature. When considering revenues and costs for cloud applications, the resource economic model can be scaled down to the transaction level in order to associate source code with costs incurred while running in the cloud. Both static and dynamic analysis techniques can be developed and applied to understand how and where cloud applications incur costs. Such analyses can help optimize (i.e. minimize) costs and verify that they stay within expected tolerances. An adaptation of Worst Case Execution Time (WCET) analysis is presented here to statically determine worst case monetary costs of cloud applications. This analysis is used to produce an algorithm for determining control flow paths within an application that can exceed a given cost threshold. The corresponding results are used to identify path sections that contribute most to cost excess. A hybrid approach for determining cost excesses is also presented that is comprised mostly of dynamic measurements but that also incorporates calculations that are based on the static analysis approach. This approach uses operational profiles to increase the precision and usefulness of the calculations.
ContributorsBuell, Kevin, Ph.D (Author) / Collofello, James (Thesis advisor) / Davulcu, Hasan (Committee member) / Lindquist, Timothy (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
151517-Thumbnail Image.png
Description
Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like

Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like data with relevant consumption information but stored in different format and insufficient data about project attributes to interpret consumption data. Our first goal is to clean the historical data and organize it into meaningful structures for analysis. Once the preprocessing on data is completed, different data mining techniques like clustering is applied to find projects which involve resources of similar skillsets and which involve similar complexities and size. This results in "resource utilization templates" for groups of related projects from a resource consumption perspective. Then project characteristics are identified which generate this diversity in headcounts and skillsets. These characteristics are not currently contained in the data base and are elicited from the managers of historical projects. This represents an opportunity to improve the usefulness of the data collection system for the future. The ultimate goal is to match the product technical features with the resource requirement for projects in the past as a model to forecast resource requirements by skill set for future projects. The forecasting model is developed using linear regression with cross validation of the training data as the past project execution are relatively few in number. Acceptable levels of forecast accuracy are achieved relative to human experts' results and the tool is applied to forecast some future projects' resource demand.
ContributorsBhattacharya, Indrani (Author) / Sen, Arunabha (Thesis advisor) / Kempf, Karl G. (Thesis advisor) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
152541-Thumbnail Image.png
Description
Contemporary online social platforms present individuals with social signals in the form of news feed on their peers' activities. On networks such as Facebook, Quora, network operator decides how that information is shown to an individual. Then the user, with her own interests and resource constraints selectively acts on a

Contemporary online social platforms present individuals with social signals in the form of news feed on their peers' activities. On networks such as Facebook, Quora, network operator decides how that information is shown to an individual. Then the user, with her own interests and resource constraints selectively acts on a subset of items presented to her. The network operator again, shows that activity to a selection of peers, and thus creating a behavioral loop. That mechanism of interaction and information flow raises some very interesting questions such as: can network operator design social signals to promote a particular activity like sustainability, public health care awareness, or to promote a specific product? The focus of my thesis is to answer that question. In this thesis, I develop a framework to personalize social signals for users to guide their activities on an online platform. As the result, we gradually nudge the activity distribution on the platform from the initial distribution p to the target distribution q. My work is particularly applicable to guiding collaborations, guiding collective actions, and online advertising. In particular, I first propose a probabilistic model on how users behave and how information flows on the platform. The main part of this thesis after that discusses the Influence Individuals through Social Signals (IISS) framework. IISS consists of four main components: (1) Learner: it learns users' interests and characteristics from their historical activities using Bayesian model, (2) Calculator: it uses gradient descent method to compute the intermediate activity distributions, (3) Selector: it selects users who can be influenced to adopt or drop specific activities, (4) Designer: it personalizes social signals for each user. I evaluate the performance of IISS framework by simulation on several network topologies such as preferential attachment, small world, and random. I show that the framework gradually nudges users' activities to approach the target distribution. I use both simulation and mathematical method to analyse convergence properties such as how fast and how close we can approach the target distribution. When the number of activities is 3, I show that for about 45% of target distributions, we can achieve KL-divergence as low as 0.05. But for some other distributions KL-divergence can be as large as 0.5.
ContributorsLe, Tien D (Author) / Sundaram, Hari (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2014
152158-Thumbnail Image.png
Description
Most data cleaning systems aim to go from a given deterministic dirty database to another deterministic but clean database. Such an enterprise pre–supposes that it is in fact possible for the cleaning process to uniquely recover the clean versions of each dirty data tuple. This is not possible in many

Most data cleaning systems aim to go from a given deterministic dirty database to another deterministic but clean database. Such an enterprise pre–supposes that it is in fact possible for the cleaning process to uniquely recover the clean versions of each dirty data tuple. This is not possible in many cases, where the most a cleaning system can do is to generate a (hopefully small) set of clean candidates for each dirty tuple. When the cleaning system is required to output a deterministic database, it is forced to pick one clean candidate (say the "most likely" candidate) per tuple. Such an approach can lead to loss of information. For example, consider a situation where there are three equally likely clean candidates of a dirty tuple. An appealing alternative that avoids such an information loss is to abandon the requirement that the output database be deterministic. In other words, even though the input (dirty) database is deterministic, I allow the reconstructed database to be probabilistic. Although such an approach does avoid the information loss, it also brings forth several challenges. For example, how many alternatives should be kept per tuple in the reconstructed database? Maintaining too many alternatives increases the size of the reconstructed database, and hence the query processing time. Second, while processing queries on the probabilistic database may well increase recall, how would they affect the precision of the query processing? In this thesis, I investigate these questions. My investigation is done in the context of a data cleaning system called BayesWipe that has the capability of producing multiple clean candidates per each dirty tuple, along with the probability that they are the correct cleaned version. I represent these alternatives as tuples in a tuple disjoint probabilistic database, and use the Mystiq system to process queries on it. This probabilistic reconstruction (called BayesWipe–PDB) is compared to a deterministic reconstruction (called BayesWipe–DET)—where the most likely clean candidate for each tuple is chosen, and the rest of the alternatives discarded.
ContributorsRihan, Preet Inder Singh (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
152164-Thumbnail Image.png
Description
Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11

Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11 but all ignore the network topology and demand. Persistence is defined as the fraction of time a node is allowed to transmit, when this allowance should take into account topology and load, it is topology and load aware persistence (TLA). We develop a relation between contention window size and the TLA-persistence. We implement a new backoff strategy where the TLA-persistence is defined as the lexicographic max-min channel allocation. We use a centralized algorithm to calculate each node's TLApersistence and then convert it into a contention window size. The new backoff strategy is evaluated in simulation, comparing with that of the IEEE 802.11 using BEB. In most of the static scenarios like exposed terminal, flow in the middle, star topology, and heavy loaded multi-hop networks and in MANETs, through the simulation study, we show that the new backoff strategy achieves higher overall average throughput as compared to that of the IEEE 802.11 using BEB.
ContributorsBhyravajosyula, Sai Vishnu Kiran (Author) / Syrotiuk, Violet R. (Thesis advisor) / Sen, Arunabha (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2013
152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
ContributorsShirazipourazad, Shahrzad (Author) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Saripalli, Srikanth (Committee member) / Arizona State University (Publisher)
Created2014
152514-Thumbnail Image.png
Description
As the size and scope of valuable datasets has exploded across many industries and fields of research in recent years, an increasingly diverse audience has sought out effective tools for their large-scale data analytics needs. Over this period, machine learning researchers have also been very prolific in designing improved algorithms

As the size and scope of valuable datasets has exploded across many industries and fields of research in recent years, an increasingly diverse audience has sought out effective tools for their large-scale data analytics needs. Over this period, machine learning researchers have also been very prolific in designing improved algorithms which are capable of finding the hidden structure within these datasets. As consumers of popular Big Data frameworks have sought to apply and benefit from these improved learning algorithms, the problems encountered with the frameworks have motivated a new generation of Big Data tools to address the shortcomings of the previous generation. One important example of this is the improved performance in the newer tools with the large class of machine learning algorithms which are highly iterative in nature. In this thesis project, I set about to implement a low-rank matrix completion algorithm (as an example of a highly iterative algorithm) within a popular Big Data framework, and to evaluate its performance processing the Netflix Prize dataset. I begin by describing several approaches which I attempted, but which did not perform adequately. These include an implementation of the Singular Value Thresholding (SVT) algorithm within the Apache Mahout framework, which runs on top of the Apache Hadoop MapReduce engine. I then describe an approach which uses the Divide-Factor-Combine (DFC) algorithmic framework to parallelize the state-of-the-art low-rank completion algorithm Orthogoal Rank-One Matrix Pursuit (OR1MP) within the Apache Spark engine. I describe the results of a series of tests running this implementation with the Netflix dataset on clusters of various sizes, with various degrees of parallelism. For these experiments, I utilized the Amazon Elastic Compute Cloud (EC2) web service. In the final analysis, I conclude that the Spark DFC + OR1MP implementation does indeed produce competitive results, in both accuracy and performance. In particular, the Spark implementation performs nearly as well as the MATLAB implementation of OR1MP without any parallelism, and improves performance to a significant degree as the parallelism increases. In addition, the experience demonstrates how Spark's flexible programming model makes it straightforward to implement this parallel and iterative machine learning algorithm.
ContributorsKrouse, Brian (Author) / Ye, Jieping (Thesis advisor) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2014