This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 88
152222-Thumbnail Image.png
Description
An embedded HVDC system is a dc link with at least two ends being physically connected within a single synchronous ac network. The thesis reviews previous works on embedded HVDC, proposes a dynamic embedded HVDC model by PSCAD program, and compares the transient stability performance among AC, DC and embedded

An embedded HVDC system is a dc link with at least two ends being physically connected within a single synchronous ac network. The thesis reviews previous works on embedded HVDC, proposes a dynamic embedded HVDC model by PSCAD program, and compares the transient stability performance among AC, DC and embedded HVDC. The test results indicate that by installing the embedded HVDC, AC network transient stability performance has been largely improved. Therefore the thesis designs a novel frequency control topology for embedded HVDC. According to the dynamic performance test results, when the embedded HVDC system equipped with a frequency control, the system transient stability will be improved further.
ContributorsYu, Jicheng (Author) / Karady, George G. (Thesis advisor) / Hui, Yu (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
152174-Thumbnail Image.png
Description
Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can

Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To overcome the limitations of TTeMP, the new application can perform dynamic loading under emergency conditions, such as loss-of transformer loading. It also has the capability to determine the emergency rating of the transformers for a real-time estimation.
ContributorsZhang, Ming (Author) / Tylavsky, Daniel J (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
152258-Thumbnail Image.png
Description
Underground cables have been widely used in big cities. This is because underground cables offer the benefits of reducing visual impact and the disturbance caused by bad weather (wind, ice, snow, and the lightning strikes). Additionally, when placing power lines underground, the maintenance costs can also be reduced as a

Underground cables have been widely used in big cities. This is because underground cables offer the benefits of reducing visual impact and the disturbance caused by bad weather (wind, ice, snow, and the lightning strikes). Additionally, when placing power lines underground, the maintenance costs can also be reduced as a result. The underground cable rating calculation is the most critical part of designing the cable construction and cable installation. In this thesis, three contributions regarding the cable ampacity study have been made. First, an analytical method for rating of underground cables has been presented. Second, this research also develops the steady state and transient ratings for Salt River Project (SRP) 69 kV underground system using the commercial software CYMCAP for several typical substations. Third, to find an alternative way to predict the cable ratings, three regression models have been built. The residual plot and mean square error for the three methods have been analyzed. The conclusion is dawn that the nonlinear regression model provides the sufficient accuracy of the cable rating prediction for SRP's typical installation.
ContributorsWang, Tong (Author) / Tylavsky, Daniel (Thesis advisor) / Karady, George G. (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
152043-Thumbnail Image.png
Description
The main objective of this study is to investigate the mechanical behaviour of cementitious based composites subjected dynamic tensile loading, with effects of strain rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening model based on finite difference model, previously developed at Arizona State University were

The main objective of this study is to investigate the mechanical behaviour of cementitious based composites subjected dynamic tensile loading, with effects of strain rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening model based on finite difference model, previously developed at Arizona State University were used to help study the bonding mechanism between fibre and matrix, and the phenomenon of tension stiffening due to the addition of fibres and textiles. Uniaxial tension tests were conducted on strain-hardening cement-based composites (SHCC), textile reinforced concrete (TRC) with and without addition of short fibres, at the strain rates ranging from 25 s-1 to 100 s-1. Historical data on quasi-static tests of same materials were used to demonstrate the effects including increases in average tensile strength, strain capacity, work-to-fracture due to high strain rate. Polyvinyl alcohol (PVA), glass, polypropylene were employed as reinforcements of concrete. A state-of-the-art phantom v7 high speed camera was setup to record the video at frame rate of 10,000 fps. Random speckle pattern of texture style was made on the surface of specimens for image analysis. An optical non-contacting deformation measurement technique referred to as digital image correlation (DIC) method was used to conduct the image analysis by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-filed strain distribution, strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and corrected the stress-strain responses.
ContributorsYao, Yiming (Author) / Barzin, Mobasher (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2013
151352-Thumbnail Image.png
Description
A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The hardening techniques used in the cell library are described and evaluated, with a focus on both layout techniques that mitigate total ionizing dose (TID) and

A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The hardening techniques used in the cell library are described and evaluated, with a focus on both layout techniques that mitigate total ionizing dose (TID) and latchup issues and flip-flop designs that mitigate single event transient (SET) and single event upset (SEU) issues. The base TMR self-correcting master-slave flip-flop is described and compared to more traditional hardening techniques. Additional refinements are presented, including testability features that disable the self-correction to allow detection of manufacturing defects. The circuit approach is validated for hardness using both heavy ion and proton broad beam testing. For synthesis and auto place and route, the methodology and circuits leverage commercial logic design automation tools. These tools are glued together with custom CAD tools designed to enable easy conversion of standard single redundant hardware description language (HDL) files into hardened TMR circuitry. The flow allows hardening of any synthesizable logic at clock frequencies comparable to unhardened designs and supports standard low-power techniques, e.g. clock gating and supply voltage scaling.
ContributorsHindman, Nathan (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Barnaby, Hugh (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2012
151367-Thumbnail Image.png
Description
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on

This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.
ContributorsDeivanayagam, Arumugam (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
151381-Thumbnail Image.png
Description
The dissolution of metal layers such as silver into chalcogenide glass layers such as germanium selenide changes the resistivity of the metal and chalcogenide films by a great extent. It is known that the incorporation of the metal can be achieved by ultra violet light exposure or thermal processes. In

The dissolution of metal layers such as silver into chalcogenide glass layers such as germanium selenide changes the resistivity of the metal and chalcogenide films by a great extent. It is known that the incorporation of the metal can be achieved by ultra violet light exposure or thermal processes. In this work, the use of metal dissolution by exposure to gamma radiation has been explored for radiation sensor applications. Test structures were designed and a process flow was developed for prototype sensor fabrication. The test structures were designed such that sensitivity to radiation could be studied. The focus is on the effect of gamma rays as well as ultra violet light on silver dissolution in germanium selenide (Ge30Se70) chalcogenide glass. Ultra violet radiation testing was used prior to gamma exposure to assess the basic mechanism. The test structures were electrically characterized prior to and post irradiation to assess resistance change due to metal dissolution. A change in resistance was observed post irradiation and was found to be dependent on the radiation dose. The structures were also characterized using atomic force microscopy and roughness measurements were made prior to and post irradiation. A change in roughness of the silver films on Ge30Se70 was observed following exposure. This indicated the loss of continuity of the film which causes the increase in silver film resistance following irradiation. Recovery of initial resistance in the structures was also observed after the radiation stress was removed. This recovery was explained with photo-stimulated deposition of silver from the chalcogenide at room temperature confirmed with the re-appearance of silver dendrites on the chalcogenide surface. The results demonstrate that it is possible to use the metal dissolution effect in radiation sensing applications.
ContributorsChandran, Ankitha (Author) / Kozicki, Michael N (Thesis advisor) / Holbert, Keith E. (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
151561-Thumbnail Image.png
Description
This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the

This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the salient fea-tures of the proposed topology are: a) provides variable impedance that provides a 50% reduction in prospective fault current; b) near instantaneous response time which is with-in the first half cycle (1-4 ms); c) the use of semiconductor switches as the commutating switch which produces reduced leakage current, reduced losses, improved reliability, and a faster switch time (ns-µs); d) zero losses in steady-state operation; e) use of a Neodym-ium (NdFeB) permanent magnet as the limiting impedance which reduces size, cost, weight, eliminates DC biasing and cooling costs; f) use of Pulse Width Modulation (PWM) to control the magnitude of the fault current to a user's desired level. g) experi-mental test system is developed and tested to prove the concepts of the proposed FCL. This dissertation presents the proposed topology and its working principle backed up with numerical verifications, simulation results, and hardware implementation results. Conclu-sions and future work are also presented.
ContributorsPrigmore, Jay (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
151435-Thumbnail Image.png
Description
The main objective of this study is to develop an innovative system in the form of a sandwich panel type composite with textile reinforced skins and aerated concrete core. Existing theoretical concepts along with extensive experimental investigations were utilized to characterize the behavior of cement based systems in the presence

The main objective of this study is to develop an innovative system in the form of a sandwich panel type composite with textile reinforced skins and aerated concrete core. Existing theoretical concepts along with extensive experimental investigations were utilized to characterize the behavior of cement based systems in the presence of individual fibers and textile yarns. Part of this thesis is based on a material model developed here in Arizona State University to simulate experimental flexural response and back calculate tensile response. This concept is based on a constitutive law consisting of a tri-linear tension model with residual strength and a bilinear elastic perfectly plastic compression stress strain model. This parametric model was used to characterize Textile Reinforced Concrete (TRC) with aramid, carbon, alkali resistant glass, polypropylene TRC and hybrid systems of aramid and polypropylene. The same material model was also used to characterize long term durability issues with glass fiber reinforced concrete (GFRC). Historical data associated with effect of temperature dependency in aging of GFRC composites were used. An experimental study was conducted to understand the behavior of aerated concrete systems under high stain rate impact loading. Test setup was modeled on a free fall drop of an instrumented hammer using three point bending configuration. Two types of aerated concrete: autoclaved aerated concrete (AAC) and polymeric fiber-reinforced aerated concrete (FRAC) were tested and compared in terms of their impact behavior. The effect of impact energy on the mechanical properties was investigated for various drop heights and different specimen sizes. Both materials showed similar flexural load carrying capacity under impact, however, flexural toughness of fiber-reinforced aerated concrete was proved to be several degrees higher in magnitude than that provided by plain autoclaved aerated concrete. Effect of specimen size and drop height on the impact response of AAC and FRAC was studied and discussed. Results obtained were compared to the performance of sandwich beams with AR glass textile skins with aerated concrete core under similar impact conditions. After this extensive study it was concluded that this type of sandwich composite could be effectively used in low cost sustainable infrastructure projects.
ContributorsDey, Vikram (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
151540-Thumbnail Image.png
Description
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with

The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with the growing penetration of the CHP-based DG. Subse-quently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and sit-ing for a larger test bed with the given information of energy infrastructures. In this con-text, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The pro-posed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation per-formances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electrici-ty, gas, and water system models were developed individually and coupled by the devel-oped CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
ContributorsZhang, Xianjun (Author) / Karady, George G. (Thesis advisor) / Ariaratnam, Samuel T. (Committee member) / Holbert, Keith E. (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013