This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 74
152176-Thumbnail Image.png
Description
Buddhism is thriving in US-America, attracting many converts with college and post-graduate degrees as well as selling all forms of popular culture. Yet little is known about the communication dynamics behind the diffusion of Buddhist religious/spiritual traditions into the United States. Religion is an underexplored area of intercultural communication studies

Buddhism is thriving in US-America, attracting many converts with college and post-graduate degrees as well as selling all forms of popular culture. Yet little is known about the communication dynamics behind the diffusion of Buddhist religious/spiritual traditions into the United States. Religion is an underexplored area of intercultural communication studies (Nakayama & Halualani, 2010) and this study meets the lacuna in critical intercultural communication scholarship by investigating the communication practices of US-Americans adopting Asian Buddhist religious/spiritual traditions. Ethnographic observations were conducted at events where US-Americans gathered to learn about and practice Buddhist religious/spiritual traditions. In addition, interviews were conducted with US-Americans who were both learning and teaching Buddhism. The grounded theory method was used for data analysis. The findings of this study describe an emerging theory of the paracultural imaginary -- the space of imagining that one could be better than who one was today by taking on the cultural vestments of (an)Other. The embodied communication dynamics of intercultural exchange that take place when individuals adopt the rituals and philosophies of a foreign culture are described. In addition, a self-reflexive narrative of my struggle with the silence of witnessing the paracultural imaginary is weaved into the analysis. The findings from this study extend critical theorizing on cultural identity, performativity, and cultural appropriation in the diffusion of traditions between cultural groups. In addition, the study addresses the complexity of speaking out against the subtle prejudices in encountered in intercultural communication.
ContributorsWong, Terrie Siang-Ting (Author) / de la Garza, Sarah Amira (Thesis advisor) / Margolis, Eric (Committee member) / Budruk, Megha (Committee member) / Chen, Vivian Hsueh-Hua (Committee member) / Arizona State University (Publisher)
Created2013
152086-Thumbnail Image.png
Description
The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino acid in response to one codon. It has been demonstrated

The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino acid in response to one codon. It has been demonstrated that reengineering of the peptidyltransferase center (PTC) of the ribosome enabled the incorporation of both alpha-D-amino acids and beta-amino acids into full length protein. Described in Chapter 2 are five modified ribosomes having modifications in the peptidyltrasnferase center in the 23S rRNA. These modified ribosomes successfully incorporated five different beta-amino acids (2.1 - 2.5) into E. coli dihydrofolate reductase (DHFR). The second project (Chapter 3) focused on the study of the modified ribosomes facilitating the incorporation of the dipeptide glycylphenylalanine (3.25) and fluorescent dipeptidomimetic 3.26 into DHFR. These ribosomes also had modifications in the peptidyltransferase center in the 23S rRNA of the 50S ribosomal subunit. The modified DHFRs having beta-amino acids 2.3 and 2.5, dipeptide glycylphenylalanine (3.25) and dipeptidomimetic 3.26 were successfully characterized by the MALDI-MS analysis of the peptide fragments produced by "in-gel" trypsin digestion of the modified proteins. The fluorescent spectra of the dipeptidomimetic 3.26 and modified DHFR having fluorescent dipeptidomimetic 3.26 were also measured. The type I and II DNA topoisomerases have been firmly established as effective molecular targets for many antitumor drugs. A "classical" topoisomerase I or II poison acts by misaligning the free hydroxyl group of the sugar moiety of DNA and preventing the reverse transesterfication reaction to religate DNA. There have been only two classes of compounds, saintopin and topopyrones, reported as dual topoisomerase I and II poisons. Chapter 4 describes the synthesis and biological evaluation of topopyrones. Compound 4.10, employed at 20 µM, was as efficient as 0.5 uM camptothecin, a potent topoisomerase I poison, in stabilizing the covalent binary complex (~30%). When compared with a known topoisomerase II poison, etoposide (at 0.5 uM), topopyorone 4.10 produced similar levels of stabilized DNA-enzyme binary complex (~34%) at 5 uM concentration.
ContributorsMaini, Rumit (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
152090-Thumbnail Image.png
Description
Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy

Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy in the form of a fuel via systems capable of carrying out photo-induced electron transfer to drive the production of hydrogen from water. Herein is detailed progress in using photo-induced stepwise electron transfer to drive the oxidation of water and reduction of protons to hydrogen. In the design, use of more blue absorbing porphyrin dyes to generate high-potential intermediates for oxidizing water and more red absorbing phthalocyanine dyes for forming the low potential charge needed for the production of hydrogen have been utilized. For investigating water oxidation at the photoanode, high potential porphyrins such as, bis-pyridyl porphyrins and pentafluorophenyl porphyrins have been synthesized and experiments have aimed at the co-immobilization of this dye with an IrO2-nH2O catalyst on TiO2. To drive the cathodic reaction of the water splitting photoelectrochemical cell, utilization of silicon octabutoxy-phthalocyanines have been explored, as they offer good absorption in the red to near infrared, coupled with low potential photo-excited states. Axially and peripherally substituted phthalocyanines bearing carboxylic anchoring groups for the immobilization on semiconductors such as TiO2 has been investigated. Ultimately, this work should culminate in a photoelectrochemical cell capable of splitting water to oxygen and hydrogen with the only energy input from light. A series of perylene dyes bearing multiple semi-conducting metal oxide anchoring groups have been synthesized and studied. Results have shown interfacial electron transfer between these perylenes and TiO2 nanoparticles encapsulated within reverse micelles and naked nanoparticles. The binding process was followed by monitoring the hypsochromic shift of the dye absorption spectra over time. Photoinduced electron transfer from the singlet excited state of the perylenes to the TiO2 conduction band is indicated by emission quenching of the TiO2-bound form of the dyes and confirmed by transient absorption measurements of the radical cation of the dyes and free carriers (injected electrons) in the TiO2.
ContributorsBergkamp, Jesse J (Author) / Moore, Ana L (Thesis advisor) / Mariño-Ochoa, Ernesto (Thesis advisor) / Gust, Devens J (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
152245-Thumbnail Image.png
Description
The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or

The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or 4-bp codons. There has been considerable progress in developing new types of amino acids, in identifying novel methods of tRNA aminoacylation, and in expanding the genetic code to direct their position. Chemical aminoacylation of tRNAs is accomplished by acylation and ligation of a dinucleotide (pdCpA) to the 3'-terminus of truncated tRNA. This strategy allows the incorporation of a wide range of natural and unnatural amino acids into pre-determined sites, thereby facilitating the study of structure-function relationships in proteins and allowing the investigation of their biological, biochemical and biophysical properties. Described in Chapter 1 is the current methodology for synthesizing aminoacylated suppressor tRNAs. Aminoacylated suppressor tRNACUAs are typically prepared by linking pre-aminoacylated dinucleotides (aminoacyl-pdCpAs) to 74 nucleotide (nt) truncated tRNAs (tRNA-COH) via a T4 RNA ligase mediated reaction. Alternatively, there is another route outlined in Chapter 1 that utilizes a different pre-aminoacylated dinucleotide, AppA. This dinucleotide has been shown to be a suitable substrate for T4 RNA ligase mediated coupling with abbreviated tRNA-COHs for production of 76 nt aminoacyl-tRNACUAs. The synthesized suppressor tRNAs have been shown to participate in protein synthesis in vitro, in an S30 (E. coli) coupled transcription-translation system in which there is a UAG codon in the mRNA at the position corresponding to Val10. Chapter 2 describes the synthesis of two non-proteinogenic amino acids, L-thiothreonine and L-allo-thiothreonine, and their incorporation into predetermined positions of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine. Here, the elaborated proteins were site-specifically derivitized with a fluorophore at the thiothreonine residue. The synthesis and incorporation of phosphorotyrosine derivatives into DHFR is illustrated in Chapter 3. Three different phosphorylated tyrosine derivatives were prepared: bis-nitrobenzylphosphoro-L-tyrosine, nitrobenzylphosphoro-L-tyrosine, and phosphoro-L-tyrosine. Their ability to participate in a protein synthesis system was also evaluated.
ContributorsNangreave, Ryan Christopher (Author) / Hecht, Sidney M. (Thesis advisor) / Yan, Hao (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
151962-Thumbnail Image.png
Description
This study explored the motivation and persistence factors for non-professional athletes who decided after the age of 40 to begin training for an IRONMAN distance triathlon. The qualitative methodology of grounded theory (Strauss & Corbin, 1998) was used in conceptualizing and implementing the research. In-depth interviews were conducted with 10

This study explored the motivation and persistence factors for non-professional athletes who decided after the age of 40 to begin training for an IRONMAN distance triathlon. The qualitative methodology of grounded theory (Strauss & Corbin, 1998) was used in conceptualizing and implementing the research. In-depth interviews were conducted with 10 individuals in the Southwest region of the United States. Data was coded in accordance with grounded theory methods. Motivation themes that emerged from the data centered around either initiating training for triathlon as an approach toward a specific goal or outcome, or beginning triathlon as a way to cope with personal difficulties. Obstacles to motivation also emerged, such as finances and time, injury, fear and doubt, and interpersonal difficulties. Persistence themes emerged that centered around either taking active steps to help continue training and relying on internal traits or characteristics to promote persistence. Data are discussed in terms of how these individuals adopt triathlon as a part of their lifestyle and identity, and how they come to persist in training beyond IRONMAN.
ContributorsLiddell, T. Michael (Author) / Claiborn, Charles (Thesis advisor) / Kinnier, Richard (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2013
151320-Thumbnail Image.png
Description
In the latter half of the nineteenth century, colleges and universities transformed their thinking of the body as they institutionalized physical education, recreational activities, and especially physical exercise. In this study, I examine the historical discourse on physical exercise and training during this period. I employ the theoretical and methodological

In the latter half of the nineteenth century, colleges and universities transformed their thinking of the body as they institutionalized physical education, recreational activities, and especially physical exercise. In this study, I examine the historical discourse on physical exercise and training during this period. I employ the theoretical and methodological practices of Michel Foucault's archeological and genealogical work to write a "history of the present." I challenge the essential narrative of physical fitness on college and university campuses. I also discuss nineteenth century notions of ethics and masculinity as a way of understanding twenty-first century ethics and masculinity. Ultimately, I use the historical discourse to argue that institutionalization of recreation and fitness centers and activities have less to do with health and well-being and more to do with disciplining bodies and controlling individuals.
ContributorsWells, Timothy (Author) / Carlson, David L. (Thesis advisor) / Sandlin, Jennifer (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2012
151368-Thumbnail Image.png
Description
In this study, the Arizona State University Mathematics and Science Teaching Fellows 2010 program was analyzed qualitatively from start to finish to determine the impact of the research experience on teachers in the classroom. The sample for the study was the 2010 cohort of eight high school science teachers. Erickson's

In this study, the Arizona State University Mathematics and Science Teaching Fellows 2010 program was analyzed qualitatively from start to finish to determine the impact of the research experience on teachers in the classroom. The sample for the study was the 2010 cohort of eight high school science teachers. Erickson's (1986) interpretive, participant observational fieldwork method was used to report data by means of detailed descriptions of the research experience and classroom implementation. Data was collected from teacher documents, interviews, and observations. The findings revealed various factors that were responsible for an ineffective implementation of the research experience in the classroom such as research experience, curriculum support, availability of resources, and school curriculum. Implications and recommendations for future programs are discussed in the study.
ContributorsSen, Tapati (Author) / Baker, Dale (Thesis advisor) / Culbertson, Robert (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2012
Description
As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher

As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.
ContributorsHan, Dongran (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Ros, Anexandra (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
152602-Thumbnail Image.png
Description
Generally speaking, many programs of interior design have had a gender imbalance in the student population. As a case in point, the interior design program at Arizona State University (ASU) is at present ninety percent female. While other design programs such as architecture or industrial design have achieved gender balance,

Generally speaking, many programs of interior design have had a gender imbalance in the student population. As a case in point, the interior design program at Arizona State University (ASU) is at present ninety percent female. While other design programs such as architecture or industrial design have achieved gender balance, interior design has not. This research explores the reasons why male students are not enrolling in the interior design program at ASU and to what degree gender influences the selection of a major. The objectives of this research are to determine: 1) what role gender plays in the selection of interior design as a choice of a major at ASU; 2) why might male students be hesitant to join the interior design program; 3) why female students are attracted to interior design; 4) if there are gender differences in design approach; and 5) if curricular differences between interior architecture and interior design impact the gender imbalance. A mixed method approach is used in order to answer the research questions including: a literature review, a visual ethnography, and interviews of interior design students and faculty members at ASU. The results reveal that gender might have an effect on students' decision to join the interior design program. For a male student, people questioned his sexuality because they assumed he would have to be of a certain sexual orientation to study interior design. According to a male faculty member upon visiting a middle school on career day, young boys would be interested in the projects displayed at the interior design booth until they figured out what it was. Even at a young age, the boys seemed to know that interior design was a female's domain. A participant stated that women seemed to be less critical of the men's projects and were more critical of each other. A male respondent stated that on the occasion there were no men in the class the studio culture changed. Another stated that interior design students did not take feedback as well as others and need to be affirmed more often. Gender socialization, the history of interior design as a feminine career, and the title "interior design" itself are all possible factors that could deter male students from joining the program. The insights acquired from this research will provide students and faculty members from The Design School and beyond a better understanding of gender socialization and what the interior design program has to offer.
ContributorsRuff, Charlene (Author) / Giard, Jacques (Thesis advisor) / Heywood, William (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2014
152604-Thumbnail Image.png
Description
A clean and sustainable alternative to fossil fuels is solar energy. For efficient use of solar energy to be realized, artificial systems that can effectively capture and convert sunlight into a usable form of energy have to be developed. In natural photosynthesis, antenna chlorophylls and carotenoids capture sunlight and transfer

A clean and sustainable alternative to fossil fuels is solar energy. For efficient use of solar energy to be realized, artificial systems that can effectively capture and convert sunlight into a usable form of energy have to be developed. In natural photosynthesis, antenna chlorophylls and carotenoids capture sunlight and transfer the resulting excitation energy to the photosynthetic reaction center (PRC). Small reorganization energy, λ and well-balanced electronic coupling between donors and acceptors in the PRC favor formation of a highly efficient charge-separated (CS) state. By covalently linking electron/energy donors to acceptors, organic molecular dyads and triads that mimic natural photosynthesis were synthesized and studied. Peripherally linked free base phthalocyanine (Pc)-fullerene (C60) and a zinc (Zn) phthalocyanine-C60 dyads were synthesized. Photoexcitation of the Pc moiety resulted in singlet-singlet energy transfer to the attached C60, followed by electron transfer. The lifetime of the CS state was 94 ps. Linking C60 axially to silicon (Si) Pc, a lifetime of the CS state of 4.5 ns was realized. The exceptionally long-lived CS state of the SiPc-C60 dyad qualifies it for applications in solar energy conversion devices. A secondary electron donor was linked to the dyad to obtain a carotenoid (Car)-SiPc-C60 triad and ferrocene (Fc)-SiPc-C60 triad. Excitation of the SiPc moiety resulted in fast electron transfer from the Car or Fc secondary electron donors to the C60. The lifetime of the CS state was 17 ps and 1.2 ps in Car-SiPc-C60 and Fc-SiPc-C60, respectively. In Chapter 3, an efficient synthetic route that yielded regioselective oxidative porphyrin dimerization is presented. Using Cu2+ as the oxidant, meso-β doubly-connected fused porphyrin dimers were obtained in very high yields. Removal of the copper from the macrocycle affords a free base porphyrin dimer. This allows for exchange of metals and provides a route to a wider range of metallporphyrin dimers. In Chapter 4, the development of an efficient and an expedient route to bacteriopurpurin synthesis is discussed. Meso-10,20- diformylation of porphyrin was achieved and one-pot porphyrin diacrylate synthesis and cyclization to afford bacteriopurpurin was realized. The bacteriopurpurin had a reduction potential of - 0.85 V vs SCE and λmax, 845 nm.
ContributorsArero, Jaro (Author) / Gust, Devens (Thesis advisor) / Moore, Ana (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014