This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 83
Description
CYOA is a prototype of an iPhone application that produces a single, generative, musical work. This document details some of the thoughts and practices that informed its design, and specifically addresses the overlap between application structure and musical form. The concept of composed instruments is introduced and briefly discussed, some

CYOA is a prototype of an iPhone application that produces a single, generative, musical work. This document details some of the thoughts and practices that informed its design, and specifically addresses the overlap between application structure and musical form. The concept of composed instruments is introduced and briefly discussed, some features of video game design that relate to this project are considered, and some specifics of hardware implementation are addressed.
ContributorsPeterson, Julian (Author) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Levy, Benjamin (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2013
Description
Johann Sebastian Bach's violin Sonata I in G minor, BWV 1001, is a significant and widely performed work that exists in numerous editions and also as transcriptions or arrangements for various other instruments, including the guitar. A pedagogical guitar performance edition of this sonata, however, has yet to be published.

Johann Sebastian Bach's violin Sonata I in G minor, BWV 1001, is a significant and widely performed work that exists in numerous editions and also as transcriptions or arrangements for various other instruments, including the guitar. A pedagogical guitar performance edition of this sonata, however, has yet to be published. Therefore, the core of my project is a transcription and pedagogical edition of this work for guitar. The transcription is supported by an analysis, performance and pedagogical practice guide, and a recording. The analysis and graphing of phrase structures illuminate Bach's use of compositional devices and the architectural function of the work's harmonic gravities. They are intended to guide performers in their assessment of the surface ornamentation and suggest a reduction toward its fundamental purpose. The end result is a clarification of the piece through the organization of phrase structures and the prioritization of harmonic tensions and resolutions. The compiling process is intended to assist the performer in "seeing the forest from the trees." Based on markings from Bach's original autograph score, the transcription considers fingering ease on the guitar that is critical to render the music to a functional and practical level. The goal is to preserve the composer's indications to the highest degree possible while still adhering to the technical confines that allow for actual execution on the guitar. The performance guide provides suggestions for articulation, phrasing, ornamentation, and other interpretive decisions. Considering the limitations of the guitar, the author's suggestions are grounded in various concepts of historically informed performance, and also relate to today's early-music sensibilities. The pedagogical practice guide demonstrates procedures to break down and assimilate the musical material as applied toward the various elements of guitar technique and practice. The CD recording is intended to demonstrate the transcription and the connection to the concepts discussed. It is hoped that this pedagogical edition will provide a rational that serves to support technical decisions within the transcription and generate meaningful interpretive realizations based on principles of historically informed performance.
ContributorsFelice, Joseph Philip (Author) / Koonce, Frank (Thesis advisor) / Feisst, Sabine (Committee member) / Swartz, Jonathan (Committee member) / Arizona State University (Publisher)
Created2013
151778-Thumbnail Image.png
Description
This project features three new pieces for clarinet commissioned from three different composers. Two are for unaccompanied clarinet and one is for clarinet, bass clarinet, and laptop. These pieces are Storm's a Comin' by Chris Burton, Light and Shadows by Theresa Martin, and My Own Agenda by Robbie McCarthy. These

This project features three new pieces for clarinet commissioned from three different composers. Two are for unaccompanied clarinet and one is for clarinet, bass clarinet, and laptop. These pieces are Storm's a Comin' by Chris Burton, Light and Shadows by Theresa Martin, and My Own Agenda by Robbie McCarthy. These three solos challenge the performer in various ways including complex rhythm, use of extended techniques such as growling, glissando, and multiphonics, and the incorporation of technology into a live performance. In addition to background information, a performance practice guide has also been included for each of the pieces. This guide provides recommendations and suggestions for future performers wishing to study and perform these works. Also included are transcripts of interviews done with each of the composers as well as full scores for each of the pieces. Accompanying this document are recordings of each of the three pieces, performed by the author.
ContributorsVaughan, Melissa Lynn (Author) / Spring, Robert (Thesis advisor) / Micklich, Albie (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013
151795-Thumbnail Image.png
Description
Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to

Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to letting sound evolve freely, different movements revolve around different sounds and sound producing techniques.
ContributorsDori, Gil (Contributor) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013
152413-Thumbnail Image.png
Description
Switch mode DC/DC converters are suited for battery powered applications, due to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency PWM based converters, which are generally used for these applications offer good voltage regulation, low ripple and excellent efficiency at high load currents. However at light

Switch mode DC/DC converters are suited for battery powered applications, due to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency PWM based converters, which are generally used for these applications offer good voltage regulation, low ripple and excellent efficiency at high load currents. However at light load currents, fixed frequency PWM converters suffer from poor efficiencies The PFM control offers higher efficiency at light loads at the cost of a higher ripple. The PWM has a poor efficiency at light loads but good voltage ripple characteristics, due to a high switching frequency. To get the best of both control modes, both loops are used together with the control switched from one loop to another based on the load current. Such architectures are referred to as hybrid converters. While transition from PFM to PWM loop can be made by estimating the average load current, transition from PFM to PWM requires voltage or peak current sensing. This theses implements a hysteretic PFM solution for a synchronous buck converter with external MOSFET's, to achieve efficiencies of about 80% at light loads. As the PFM loop operates independently of the PWM loop, a transition circuit for automatically transitioning from PFM to PWM is implemented. The transition circuit is implemented digitally without needing any external voltage or current sensing circuit.
ContributorsVivek, Parasuram (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2014
152421-Thumbnail Image.png
Description
ABSTRACT The D flip flop acts as a sequencing element while designing any pipelined system. Radiation Hardening by Design (RHBD) allows hardened circuits to be fabricated on commercially available CMOS manufacturing process. Recently, single event transients (SET's) have become as important as single event upset (SEU) in radiation hardened high

ABSTRACT The D flip flop acts as a sequencing element while designing any pipelined system. Radiation Hardening by Design (RHBD) allows hardened circuits to be fabricated on commercially available CMOS manufacturing process. Recently, single event transients (SET's) have become as important as single event upset (SEU) in radiation hardened high speed digital designs. A novel temporal pulse based RHBD flip-flop design is presented. Temporally delayed pulses produced by a radiation hardened pulse generator design samples the data in three redundant pulse latches. The proposed RHBD flip-flop has been statistically designed and fabricated on 90 nm TSMC LP process. Detailed simulations of the flip-flop operation in both normal and radiation environments are presented. Spatial separation of critical nodes for the physical design of the flip-flop is carried out for mitigating multi-node charge collection upsets. The proposed flip-flop is also used in commercial CAD flows for high performance chip designs. The proposed flip-flop is used in the design and auto-place-route (APR) of an advanced encryption system and the metrics analyzed.
ContributorsKumar, Sushil (Author) / Clark, Lawrence (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2014
152563-Thumbnail Image.png
Description
Piano Quintet> is a three movement piece, inspired by music of Eastern Europe. Sunrise in Hungary starts with a legato song in the first violin unfolding over slow moving sustained harmonics in the rest of the strings. This is contrasted with a lively Hungarian dance which starts in the piano

Piano Quintet> is a three movement piece, inspired by music of Eastern Europe. Sunrise in Hungary starts with a legato song in the first violin unfolding over slow moving sustained harmonics in the rest of the strings. This is contrasted with a lively Hungarian dance which starts in the piano and jumps throughout all of the voices. Armenian Lament introduces a mournful melody performed over a subtly shifting pedal tone in the cello. The rest of the voices are slowly introduced until the movement builds into a canonic threnody. Evening in Bulgaria borrows from the vast repertoire of Bulgarian dances, including rhythms from the horo and rachenitsa. Each time that the movement returns to the primary theme, it incorporates aspects of the dance that directly preceded it. The final return is the crux of the piece, with the first violin playing a virtuosic ornaments run on the melody.
ContributorsGiese, Adam (Composer) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2014
152459-Thumbnail Image.png
Description
Non-volatile memories (NVM) are widely used in modern electronic devices due to their non-volatility, low static power consumption and high storage density. While Flash memories are the dominant NVM technology, resistive memories such as phase change access memory (PRAM) and spin torque transfer random access memory (STT-MRAM) are gaining ground.

Non-volatile memories (NVM) are widely used in modern electronic devices due to their non-volatility, low static power consumption and high storage density. While Flash memories are the dominant NVM technology, resistive memories such as phase change access memory (PRAM) and spin torque transfer random access memory (STT-MRAM) are gaining ground. All these technologies suffer from reliability degradation due to process variations, structural limits and material property shift. To address the reliability concerns of these NVM technologies, multi-level low cost solutions are proposed for each of them. My approach consists of first building a comprehensive error model. Next the error characteristics are exploited to develop low cost multi-level strategies to compensate for the errors. For instance, for NAND Flash memory, I first characterize errors due to threshold voltage variations as a function of the number of program/erase cycles. Next a flexible product code is designed to migrate to a stronger ECC scheme as program/erase cycles increases. An adaptive data refresh scheme is also proposed to improve memory reliability with low energy cost for applications with different data update frequencies. For PRAM, soft errors and hard errors models are built based on shifts in the resistance distributions. Next I developed a multi-level error control approach involving bit interleaving and subblock flipping at the architecture level, threshold resistance tuning at the circuit level and programming current profile tuning at the device level. This approach helped reduce the error rate significantly so that it was now sufficient to use a low cost ECC scheme to satisfy the memory reliability constraint. I also studied the reliability of a PRAM+DRAM hybrid memory system and analyzed the tradeoffs between memory performance, programming energy and lifetime. For STT-MRAM, I first developed an error model based on process variations. I developed a multi-level approach to reduce the error rates that consisted of increasing the W/L ratio of the access transistor, increasing the voltage difference across the memory cell and adjusting the current profile during write operation. This approach enabled use of a low cost BCH based ECC scheme to achieve very low block failure rates.
ContributorsYang, Chengen (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Committee member) / Ogras, Umit Y. (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2014
152826-Thumbnail Image.png
Description
The research objective is fully differential op-amp with common mode feedback, which are applied in filter, band gap, Analog Digital Converter (ADC) and so on as a fundamental component in analog circuit. Having modeled various defect and analyzed corresponding probability, defect library could be built after reduced defect simulation.Based on

The research objective is fully differential op-amp with common mode feedback, which are applied in filter, band gap, Analog Digital Converter (ADC) and so on as a fundamental component in analog circuit. Having modeled various defect and analyzed corresponding probability, defect library could be built after reduced defect simulation.Based on the resolution of microscope scan tool, all these defects are categorized into four groups of defects by both function and location, bias circuit defect, first stage amplifier defect, output stage defect and common mode feedback defect, separately. Each fault result is attributed to one of these four region defects.Therefore, analog testing algorithm and automotive tool could be generated to assist testing engineers to meet the demand of large numbers of chips.
ContributorsLu, Zhijian (Author) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2014
153334-Thumbnail Image.png
Description
Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications.

In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound

Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications.

In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound a reality are presented. First, image enhancement methods to improve signal-to-noise ratio (SNR) are proposed. These include virtual source firing techniques and a low overhead digital front-end architecture using orthogonal chirps and orthogonal Golay codes.

Second, algorithm-architecture co-design techniques to reduce the power consumption of 3-D SAU imaging systems is presented. These include (i) a subaperture multiplexing strategy and the corresponding apodization method to alleviate the signal bandwidth bottleneck, and (ii) a highly efficient iterative delay calculation method to eliminate complex operations such as multiplications, divisions and square-root in delay calculation during beamforming. These techniques were used to define Sonic Millip3De, a 3-D die stacked architecture for digital beamforming in SAU systems. Sonic Millip3De produces 3-D high resolution images at 2 frames per second with system power consumption of 15W in 45nm technology.

Third, a new beamforming method based on separable delay decomposition is proposed to reduce the computational complexity of the beamforming unit in an SAU system. The method is based on minimizing the root-mean-square error (RMSE) due to delay decomposition. It reduces the beamforming complexity of a SAU system by 19x while providing high image fidelity that is comparable to non-separable beamforming. The resulting modified Sonic Millip3De architecture supports a frame rate of 32 volumes per second while maintaining power consumption of 15W in 45nm technology.

Next a 3-D plane-wave imaging system that utilizes both separable beamforming and coherent compounding is presented. The resulting system has computational complexity comparable to that of a non-separable non-compounding baseline system while significantly improving contrast-to-noise ratio and SNR. The modified Sonic Millip3De architecture is now capable of generating high resolution images at 1000 volumes per second with 9-fire-angle compounding.
ContributorsYang, Ming (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Karam, Lina (Committee member) / Frakes, David (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015