This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 73
152255-Thumbnail Image.png
Description
Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept,

Many manmade chemicals used in consumer products are ultimately washed down the drain and are collected in municipal sewers. Efficient chemical monitoring at wastewater treatment (WWT) plants thus may provide up-to-date information on chemical usage rates for epidemiological assessments. The objective of the present study was to extrapolate this concept, termed 'sewage epidemiology', to include municipal sewage sludge (MSS) in identifying and prioritizing contaminants of emerging concern (CECs). To test this the following specific aims were defined: i) to screen and identify CECs in nationally representative samples of MSS and to provide nationwide inventories of CECs in U.S. MSS; ii) to investigate the fate and persistence in MSS-amended soils, of sludge-borne hydrophobic CECs; and iii) to develop an analytical tool relying on contaminant levels in MSS as an indicator for identifying and prioritizing hydrophobic CECs. Chemicals that are primarily discharged to the sewage systems (alkylphenol surfactants) and widespread persistent organohalogen pollutants (perfluorochemicals and brominated flame retardants) were analyzed in nationally representative MSS samples. A meta-analysis showed that CECs contribute about 0.04-0.15% to the total dry mass of MSS, a mass equivalent of 2,700-7,900 metric tonnes of chemicals annually. An analysis of archived mesocoms from a sludge weathering study showed that 64 CECs persisted in MSS/soil mixtures over the course of the experiment, with half-lives ranging between 224 and >990 days; these results suggest an inherent persistence of CECs that accumulate in MSS. A comparison of the spectrum of chemicals (n=52) analyzed in nationally representative biological specimens from humans and MSS revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that MSS may serve as an indicator for ongoing human exposures and body burdens of pollutants in humans. In conclusion, I posit that this novel approach in sewage epidemiology may serve to pre-screen and prioritize the several thousands of known or suspected CECs to identify those that are most prone to pose a risk to human health and the environment.
ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf U. (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2013
151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
151362-Thumbnail Image.png
Description
Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of

Urban water systems face sustainability challenges ranging from water quality, leaks, over-use, energy consumption, and long-term supply concerns. Resiliency challenges include the capacity to respond to drought, managing pipe deterioration, responding to natural disasters, and preventing terrorism. One strategy to enhance sustainability and resiliency is the development and adoption of smart water grids. A smart water grid incorporates networked monitoring and control devices into its structure, which provides diverse, real-time information about the system, as well as enhanced control. Data provide input for modeling and analysis, which informs control decisions, allowing for improvement in sustainability and resiliency. While smart water grids hold much potential, there are also potential tradeoffs and adoption challenges. More publicly available cost-benefit analyses are needed, as well as system-level research and application, rather than the current focus on individual technologies. This thesis seeks to fill one of these gaps by analyzing the cost and environmental benefits of smart irrigation controllers. Smart irrigation controllers can save water by adapting watering schedules to climate and soil conditions. The potential benefit of smart irrigation controllers is particularly high in southwestern U.S. states, where the arid climate makes water scarcer and increases watering needs of landscapes. To inform the technology development process, a design for environment (DfE) method was developed, which overlays economic and environmental performance parameters under different operating conditions. This method is applied to characterize design goals for controller price and water savings that smart irrigation controllers must meet to yield life cycle carbon dioxide reductions and economic savings in southwestern U.S. states, accounting for regional variability in electricity and water prices and carbon overhead. Results from applying the model to smart irrigation controllers in the Southwest suggest that some areas are significantly easier to design for.
ContributorsMutchek, Michele (Author) / Allenby, Braden (Thesis advisor) / Williams, Eric (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2012
151467-Thumbnail Image.png
Description
A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP

A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP models. Recently a single-echelon heuristic Inventory Strategy Module (ISM) was added to correct for forecast bias in customer demand data using different smoothing techniques. The optimization model could then use information provided by the forecast model to make better decisions for the process model. The composition of ISM with LP and DEVS models resulted in the first realization of what is now called the Optimization Simulation Forecast (OSF) platform. It could handle a single echelon supply chain system consisting of single hubs and single products In this thesis, this single-echelon simulation platform is extended to handle multiple echelons with multiple inventory elements handling multiple products. The main aspect for the multi-echelon OSF platform was to extend the KIBDEVS/LP such that ISM interactions with the LP and DEVS models could also be supported. To achieve this, a new, scalable XML schema for the KIB has been developed. The XML schema has also resulted in strengthening the KIB execution engine design. A sequential scheme controls the executions of the DEVS-Suite simulator, CPLEX optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to compute forecast customer demands and safety stocks over multiple hubs and products. Basic examples for semiconductor manufacturing spanning single and two echelon supply chain systems have been developed and analyzed. Experiments using perfect data were conducted to show the correctness of the OSF platform design and implementation. Simple, but realistic experiments have also been conducted. They highlight the kinds of supply chain dynamics that can be evaluated using discrete event process simulation, linear programming optimization, and heuristics forecasting models.
ContributorsSmith, James Melkon (Author) / Sarjoughian, Hessam S. (Thesis advisor) / Davulcu, Hasan (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2012
151431-Thumbnail Image.png
Description
Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same

Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same input. To make things worse, the target erroneous cases may happen just in a few specific runs. Besides, the randomness of user interactions makes the whole debugging procedure more unpredictable. Thus, debugging a multiple threaded application is a tough and challenging task. This thesis introduces a replay mechanism for debugging user interactive multiple threaded Android applications. The approach is based on the 'Lamport Clock' concept, 'Event Driven' implementation and 'Client-Server' architecture. The debugger tool described in this thesis provides a user controlled debugging environment where users or developers are allowed to use modified record application to generate a log file. During the record time, all the necessary events like thread creation, synchronization and user input are recorded. Therefore, based on the information contained in the generated log files, the debugger tool can replay the application off-line since log files provide the deterministic order of execution. In this case, user or developers can replay an application as many times as they need to pinpoint the errors in the applications.
ContributorsLu, He (Author) / Lee, Yann-Hang (Thesis advisor) / Fainekos, Georgios (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012
152324-Thumbnail Image.png
Description
With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human

With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human to provide it some supervisory parameters that modify the degree of autonomy or allocate extra tasks to the robot. In this regard, this thesis presents an approach to include a provision to accept and incorporate such human inputs and modify the navigation functions of the robot accordingly. Concepts such as applying kinematical constraints while planning paths, traversing of unknown areas with an intent of maximizing field of view, performing complex tasks on command etc. have been examined and implemented. The approaches have been tested in Robot Operating System (ROS), using robots such as the iRobot Create, Personal Robotics (PR2) etc. Simulations and experimental demonstrations have proved that this approach is feasible for solving some of the existing problems and that it certainly can pave way to further research for enhancing functionality.
ContributorsVemprala, Sai Hemachandra (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152650-Thumbnail Image.png
Description
Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at

Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at higher/lower permeability interfaces. Conceptually, this provides a clean/reduced concentration zone near the interface, and consequently a reduced concentration gradient and flux from the lower permeability layer. Treatment by in-situ chemical oxidation (ISCO) was evaluated using hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8). H2O2 studies included lab and field-scale distribution studies and lab emission reduction experiments. The reaction rate of H2O2 in soils was so fast it did not travel far (<1 m) from delivery points under typical flow conditions. Oxygen gas generated and partially trapped in soil pores served as a dissolved oxygen (DO) source for >60 days in field and lab studies. During that period, the laboratory studies had reduced hydrocarbon impacts, presumably from aerobic biodegradation, which rebounded once the O2 source depleted. Therefore field monitoring should extend beyond the post-treatment elevated DO. Na2S2O8 use was studied in two-dimensional tanks (122-cm tall, 122-cm wide, and 5-cm thick) containing two contrasting permeability layers (three orders of magnitude difference). The lower permeability layer initially contained a dissolved-sorbed contaminant source throughout this layer, or a 10-cm thick non-aqueous phase liquid (NAPL)-impacted zone below the higher/lower permeability interface. The dissolved-sorbed source tank was actively treated for 14 d. Two hundred days after treatment, the emission reduction of benzene, toluene, ethylbenzene, and p-xylene (BTEX) were 95-99% and methyl tert-butyl ether (MTBE) was 63%. The LNAPL-source tank had three Na2S2O8 and two sodium hydroxide (NaOH) applications for S2O82- base activation. The resulting emission reductions for BTEX, n-propylbenzene, and 1,3,5 trymethylbenzene were 55-73%. While less effective at reducing emissions from LNAPL sources, the 14-d treatment delivered sufficient S2O82- though diffusion to remediate BTEX from the 60 cm dissolved-sorbed source. The overall S2O82- utilization in the dissolved source experiment was calculated by mass balance to be 108-125 g S2O82-/g hydrocarbon treated.
ContributorsCavanagh, Bridget (Author) / Johnson, Paul C (Thesis advisor) / Westerhoff, Paul (Committee member) / Kavazanjian, Edward (Committee member) / Bruce, Cristin (Committee member) / Arizona State University (Publisher)
Created2014
152297-Thumbnail Image.png
Description
This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a good candidate for an early warning system for ocean environmental perturbation monitoring. This early warning system will depend on identifying outlier gene expression at the single-cell level. An early warning system based on single-cell analysis is expected to detect environmental perturbations earlier than population level analysis which can only be observed after a whole community has reacted. Preliminary work using tube-based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. pseudonana under different nutrient conditions. Heterogeneity was revealed by different gene expression activity for individual cells under the same conditions. This single cell analysis showed a skewed, lognormal distribution and helped to find outlier cells. The results indicate that the geometric average becomes more important and representative of the whole population than the arithmetic average. This is in contrast with population level analysis which is limited to arithmetic averages only and highlights the value of single cell analysis. In order to develop a deployable sensor in the ocean, a chip level device was constructed. The chip contains surface-adhering droplets, defined by hydrophilic patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. The successful rate of these chip-based reactions was around 85%. The sensitivity of the chip was equivalent to published microfluidic devices with complicated designs and protocols, but the production process of the chip was simple and the materials were all easily accessible in conventional environmental and/or biology laboratories. On-chip tests provided heterogeneity information about the whole population and were validated by comparing with conventional tube based methods and by p-values analysis. The power of chip-based single-cell analyses were mainly between 65-90% which were acceptable and can be further increased by higher throughput devices. With this chip and single-cell analysis approaches, a new paradigm for robust early warning systems of ocean environmental perturbation is possible.
ContributorsShi, Xu (Author) / Meldrum, Deirdre R. (Thesis advisor) / Zhang, Weiwen (Committee member) / Chao, Shih-hui (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2013
152626-Thumbnail Image.png
Description
The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular

The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular polymeric substances (EPS). The goal of my dissertation was to quantify the impacts of extreme weather events on DOM in surface water and downstream treatment processes, and to improve membrane filtration efficiency and CECs oxidation efficiency during water reclamation with ozone. Surface water quality, air quality and hydrologic flow rate data were used to quantify changes in DOM and turbidity following dust storms, flooding, or runoff from wildfire burn areas in central Arizona. The subsequent impacts to treatment processes and public perception of water quality were also discussed. Findings showed a correlation between dust storm events and change in surface water turbidity (R2=0.6), attenuation of increased DOM through reservoir systems, a 30-40% increase in organic carbon and a 120-600% increase in turbidity following severe flooding, and differing impacts of upland and lowland wildfires. The use of ozone to reduce membrane fouling caused by vesicles (a subcomponent of EPS) and oxidize CECs through increased hydroxyl radical (HO●) production was investigated. An "ozone dose threshold" was observed above which addition of hydrogen peroxide increased HO● production; indicating the presence of ambient promoters in wastewater. Ozonation of CECs in secondary effluent over titanium dioxide or activated carbon did not increase radial production. Vesicles fouled ultrafiltration membranes faster (20 times greater flux decline) than polysaccharides, fatty acids, or NOM. Based upon the estimated carbon distribution of secondary effluent, vesicles could be responsible for 20-60% of fouling during ultrafiltration and may play a vital role in other environmental processes as well. Ozone reduced vesicle-caused membrane fouling that, in conjunction with the presence of ambient promoters, helps to explain why low ozone dosages improve membrane flux during full-scale water reclamation.
ContributorsBarry, Michelle (Author) / Barry, Michelle C (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2014
153498-Thumbnail Image.png
Description
Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric interfaces have struggled to achieve both enhanced

functionality and long-term reliability. As demands in myoelectric interfaces trend

toward simultaneous and proportional control of compliant robots, robust processing

of multi-muscle coordinations, or synergies, plays a larger role in the success of the

control scheme. This dissertation presents a framework enhancing the utility of myoelectric

interfaces by exploiting motor skill learning and

exible muscle synergies for

reliable long-term simultaneous and proportional control of multifunctional compliant

robots. The interface is learned as a new motor skill specic to the controller,

providing long-term performance enhancements without requiring any retraining or

recalibration of the system. Moreover, the framework oers control of both motion

and stiness simultaneously for intuitive and compliant human-robot interaction. The

framework is validated through a series of experiments characterizing motor learning

properties and demonstrating control capabilities not seen previously in the literature.

The results validate the approach as a viable option to remove the trade-o

between functionality and reliability that have hindered state-of-the-art myoelectric

interfaces. Thus, this research contributes to the expansion and enhancement of myoelectric

controlled applications beyond commonly perceived anthropomorphic and

\intuitive control" constraints and into more advanced robotic systems designed for

everyday tasks.
ContributorsIson, Mark (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Greger, Bradley (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015