This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 113
149790-Thumbnail Image.png
Description
Dr. Jerold D. Ottley's twenty-five years leading the Mormon Tabernacle Choir resulted in many distinguished awards and recognitions for the ensemble. Included among these are two Platinum and three Gold records from the Recording Industry Association of America, an Emmy from the Academy of Television Arts and Sciences, and two

Dr. Jerold D. Ottley's twenty-five years leading the Mormon Tabernacle Choir resulted in many distinguished awards and recognitions for the ensemble. Included among these are two Platinum and three Gold records from the Recording Industry Association of America, an Emmy from the Academy of Television Arts and Sciences, and two Freedom Foundation Awards for service to the country. He conducted the Choir at two presidential inaugurations, Ronald Reagan's in 1981 and George H. W. Bush's in 1989, as well as performances at the 1984 Los Angeles Olympics Gala. He presided over eleven international tours to twenty-six countries and crisscrossed the United States for engagements in nearly every region of the country. Despite the awards, commendations, and increased recognition of the Choir, Ottley's greatest contributions were largely internal to the organization. Jerold Ottley is a skilled music educator, administrator, and emissary. Application of these proficiencies while at the helm of the Choir, led to what are, arguably, his three largest contributions: 1) as educator, he instituted in-service training for choir members, raising the level of their individual musicianship, thereby improving the technical level of the entire Choir; 2) as administrator, Ottley created policies and procedures that resulted in a more disciplined, refined ensemble; and 3) as emissary, he raised the ensemble's reputation among the general public and with music professionals. For the general public, he significantly broadened the Choir's repertoire and traveled frequently thereby reaching a wider audience. He secured greater respect among music professionals by inviting many of them to work directly with the Choir. The results were unparalleled. Ottley's twenty-five year tenure with the Choir is reflected in broader audiences, increased professional acceptance, added organizational discipline, and unprecedented musical proficiency. It is a notable legacy for a man who reportedly never felt comfortable as director of the Mormon Tabernacle Choir.
ContributorsArchibald, Lyle Jay (Author) / Gentry, Gregory (Thesis advisor) / Britton, David (Committee member) / DeMars, James (Committee member) / Doan, Jerry (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2011
150333-Thumbnail Image.png
Description
A systematic approach to composition has been used by a variety of composers to control an assortment of musical elements in their pieces. This paper begins with a brief survey of some of the important systematic approaches that composers have employed in their compositions, devoting particular attention to Pierre Boulez's

A systematic approach to composition has been used by a variety of composers to control an assortment of musical elements in their pieces. This paper begins with a brief survey of some of the important systematic approaches that composers have employed in their compositions, devoting particular attention to Pierre Boulez's Structures Ia . The purpose of this survey is to examine several systematic approaches to composition by prominent composers and their philosophy in adopting this type of approach. The next section of the paper introduces my own systematic approach to composition: the Take-Away System. The third provides several musical applications of the system, citing my work, Octulus for two pianos, as an example. The appendix details theorems and observations within the system for further study.
ContributorsHarbin, Doug (Author) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Etezady, Roshanne, 1973- (Committee member) / Rockmaker, Jody (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2011
149797-Thumbnail Image.png
Description
Many of the works of Dominick Argento have been researched and analyzed, but his choral work Evensong: Of Love and Angels s has received limited attention thus far. Written in memoriam for his wife Carolyn Bailey Argento, Evensong draws its musical material from her initials C.B.A. These letters, translated into

Many of the works of Dominick Argento have been researched and analyzed, but his choral work Evensong: Of Love and Angels s has received limited attention thus far. Written in memoriam for his wife Carolyn Bailey Argento, Evensong draws its musical material from her initials C.B.A. These letters, translated into note names, form a conspicuous head motive that is present in each movement of the work, and it serves multiple functions: as a melodic feature, as the foundation for a twelve-tone row, and as a harmonic base. This paper provides an overview of the work's conception with specific relation to Argento's biographical details, compositional style, and work habits; a brief review of the critical reception of the work; and a succinct analysis of the form and cyclical materials found in each movement.
ContributorsPage, Carrie Leigh, 1980- (Author) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Levy, Benjamin (Committee member) / Oldani, Robert (Committee member) / Arizona State University (Publisher)
Created2011
149798-Thumbnail Image.png
Description
Everyday Arias for soprano and orchestra was composed largely in Arizona and completed in February 2011. The text was taken from a small collection of the composer's own poetry referencing her memories of life in rural Mississippi. Everyday Arias endeavors to elevate these prosaic experiences and settings to art, expressing

Everyday Arias for soprano and orchestra was composed largely in Arizona and completed in February 2011. The text was taken from a small collection of the composer's own poetry referencing her memories of life in rural Mississippi. Everyday Arias endeavors to elevate these prosaic experiences and settings to art, expressing the everyday as beautiful and worthy of artistic treatment. The primary compositional model for this work was Samuel Barber's Knoxville: Summer of 1915, but other influences included Charles Ives, Aaron Copland, Benjamin Britten, and Dominick Argento. Barber's and Argento's musical treatment of prose style seemed particularly appropriate to the goals of Everyday Arias. Ives and Copland used hymn tunes both to evoke certain associations of worship and as sources of interesting material. The vocal writing of all five composers was influential, but the orchestration techniques for winds are largely a product of studying Ives and Argento, while many string gestures are more obviously tied to Britten and - more historically - Debussy.The primary motive that weaves through the work features an ascending major second followed by a descending perfect fourth, in a long-short-long rhythmic pattern. As a melodic fragment, the motive is often inverted to a descending-ascending pattern, or distorted slightly by expanding the second interval to a perfect fifth, or used in retrograde. The motive was derived from the first measure of the melody "Toplady" (1830) by Thomas Hastings, better known as the hymn "Rock of Ages." In the first movement, the motive is used most frequently in sequences. The second movement treats the motive as a melodic element and as a unit in ostinati. The final movement humorously transforms it into a syncopated gesture to evoke ragtime.
ContributorsPage, Carrie Leigh (Composer) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Levy, Benjamin (Committee member) / Oldani, Robert (Committee member) / Arizona State University (Publisher)
Created2011
149854-Thumbnail Image.png
Description
There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such

There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such interventions. In this thesis, an approach is proposed to develop dynamical models and subsequently, hybrid model predictive control schemes for assigning optimal dosages of naltrexone, an opioid antagonist, as treatment for a chronic pain condition known as fibromyalgia. System identification techniques are employed to model the dynamics from the daily diary reports completed by participants of a blind naltrexone intervention trial. These self-reports include assessments of outcomes of interest (e.g., general pain symptoms, sleep quality) and additional external variables (disturbances) that affect these outcomes (e.g., stress, anxiety, and mood). Using prediction-error methods, a multi-input model describing the effect of drug, placebo and other disturbances on outcomes of interest is developed. This discrete time model is approximated by a continuous second order model with zero, which was found to be adequate to capture the dynamics of this intervention. Data from 40 participants in two clinical trials were analyzed and participants were classified as responders and non-responders based on the models obtained from system identification. The dynamical models can be used by a model predictive controller for automated dosage selection of naltrexone using feedback/feedforward control actions in the presence of external disturbances. The clinical requirement for categorical (i.e., discrete-valued) drug dosage levels creates a need for hybrid model predictive control (HMPC). The controller features a multiple degree-of-freedom formulation that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed loop system. The nominal and robust performance of the proposed control scheme is examined via simulation using system identification models from a representative participant in the naltrexone intervention trial. The controller evaluation described in this thesis gives credibility to the promise and applicability of control engineering principles for optimizing adaptive interventions.
ContributorsDeśapāṇḍe, Sunīla (Author) / Rivera, Daniel E. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
150196-Thumbnail Image.png
Description
Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel

Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel homogenization based multiscale modeling framework using semi-analytical micromechanics is presented to simulate the response of textile composites. The novelty of this approach lies in the three scale homogenization/localization framework bridging between the constituent (micro), the fiber tow scale (meso), weave scale (macro), and the global response. The multiscale framework, named Multiscale Generalized Method of Cells (MSGMC), continuously bridges between the micro to the global scale as opposed to approaches that are top-down and bottom-up. This framework is fully generalized and capable of modeling several different weave and braids without reformulation. Particular emphasis in this dissertation is placed on modeling the nonlinearity and failure of both polymer matrix and ceramic matrix composites.
ContributorsLiu, Guang (Author) / Chattopadhyay, Aditi (Thesis advisor) / Mignolet, Marc (Committee member) / Jiang, Hanqing (Committee member) / Li, Jian (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
150302-Thumbnail Image.png
Description
Proportional-Integral-Derivative (PID) controllers are a versatile category of controllers that are commonly used in the industry as control systems due to the ease of their implementation and low cost. One problem that continues to intrigue control designers is the matter of finding a good combination of the three parameters -

Proportional-Integral-Derivative (PID) controllers are a versatile category of controllers that are commonly used in the industry as control systems due to the ease of their implementation and low cost. One problem that continues to intrigue control designers is the matter of finding a good combination of the three parameters - P, I and D of these controllers so that system stability and optimum performance is achieved. Also, a certain amount of robustness to the process is expected from the PID controllers. In the past, many different methods for tuning PID parameters have been developed. Some notable techniques are the Ziegler-Nichols, Cohen-Coon, Astrom methods etc. For all these techniques, a simple limitation remained with the fact that for a particular system, there can be only one set of tuned parameters; i.e. there are no degrees of freedom involved to readjust the parameters for a given system to achieve, for instance, higher bandwidth. Another limitation in most cases is where a controller is designed in continuous time then converted into discrete-time for computer implementation. The drawback of this method is that some robustness due to phase and gain margin is lost in the process. In this work a method of tuning PID controllers using a loop-shaping approach has been developed where the bandwidth of the system can be chosen within an acceptable range. The loop-shaping is done against a Glover-McFarlane type ℋ∞ controller which is widely accepted as a robust control design method. The numerical computations are carried out entirely in discrete-time so there is no loss of robustness due to conversion and approximations near Nyquist frequencies. Some extra degrees of freedom owing to choice of bandwidth and capability of choosing loop-shapes are also involved and are discussed in detail. Finally, comparisons of this method against existing techniques for tuning PID controllers both in continuous and in discrete-time are shown. The results tell us that our design performs well for loop-shapes that are achievable through a PID controller.
ContributorsShafique, Md. Ashfaque Bin (Author) / Tsakalis, Konstantinos S. (Thesis advisor) / Rodriguez, Armando A. (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2011
152273-Thumbnail Image.png
Description
This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended

This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended Kalman Filters are commonly used in state estimation; however, they do not allow inclusion of constraints in their formulation. On the other hand, computational complexity of full information estimation (using all measurements) grows with iteration and becomes intractable. One way of formulating the recursive state estimation problem with constraints is the Moving Horizon Estimation (MHE) approximation. Estimates of states are calculated from the solution of a constrained optimization problem of fixed size. Detailed formulation of this strategy is studied and properties of this estimation algorithm are discussed in this work. The problem with the MHE formulation is solving an optimization problem in each iteration which is computationally intensive. State estimation with constraints can be formulated as Extended Kalman Filter (EKF) with a projection applied to estimates. The states are estimated from the measurements using standard Extended Kalman Filter (EKF) algorithm and the estimated states are projected on to a constrained set. Detailed formulation of this estimation strategy is studied and the properties associated with this algorithm are discussed. Both these state estimation strategies (MHE and EKF with projection) are tested with examples from the literature. The average estimation time and the sum of square estimation error are used to compare performance of these estimators. Results of the case studies are analyzed and trade-offs are discussed.
ContributorsJoshi, Rakesh (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
152290-Thumbnail Image.png
Description
Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2

Concerto for Piano and Chamber Orchestra was conceived in February of 2013, and conceptually it is my attempt to fuse personal expressions of jazz and classical music into one fully realized statement. It is a three movement work (fast, slow, fast) for 2 fl., 2 ob., 2 cl., bsn., 2 hrn., 2 tpt., tbn., pno., perc., str. (6,4,2,2,1). The work is approximately 27 minutes in duration. The first movement of the Concerto is written in a fluid sonata form. A fugato begins where the second theme would normally appear, and the second theme does not fully appear until near the end of the solo piano section. The result is that the second theme when finally revealed is so reminiscent of the history of jazz and classical synthesis that it does not sound completely new, and in fact is a return of something that was heard before, but only hinted at in this piece. The second movement is a kind of deconstructive set of variations, with a specific theme and harmonic pattern implied throughout the movement. However, the full theme is not disclosed until the final variation. The variations are interrupted by moments of pure rhythmic music, containing harmony made up of major chords with an added fourth, defying resolution, and dissolving each time back into a new variation. The third movement is in rondo form, using rhythmic and harmonic influences from jazz. The percussion plays a substantial role in this movement, acting as a counterpoint to the piano part throughout. This movement and the piece concludes with an extended coda, inspired indirectly by the simple complexities of an improvisational piano solo, building in complexity as the concerto draws to a close.
ContributorsSneider, Elliot (Author) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Hackbarth, Glenn (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013