This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 75
151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151914-Thumbnail Image.png
Description
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
ContributorsSummers, Matt H (Author) / Lee, Taewoo (Thesis advisor) / Chen, Kangping (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2013
151944-Thumbnail Image.png
Description
The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom-

The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions.
ContributorsGhods, Sina (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2013
151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
151467-Thumbnail Image.png
Description
A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP

A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP models. Recently a single-echelon heuristic Inventory Strategy Module (ISM) was added to correct for forecast bias in customer demand data using different smoothing techniques. The optimization model could then use information provided by the forecast model to make better decisions for the process model. The composition of ISM with LP and DEVS models resulted in the first realization of what is now called the Optimization Simulation Forecast (OSF) platform. It could handle a single echelon supply chain system consisting of single hubs and single products In this thesis, this single-echelon simulation platform is extended to handle multiple echelons with multiple inventory elements handling multiple products. The main aspect for the multi-echelon OSF platform was to extend the KIBDEVS/LP such that ISM interactions with the LP and DEVS models could also be supported. To achieve this, a new, scalable XML schema for the KIB has been developed. The XML schema has also resulted in strengthening the KIB execution engine design. A sequential scheme controls the executions of the DEVS-Suite simulator, CPLEX optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to compute forecast customer demands and safety stocks over multiple hubs and products. Basic examples for semiconductor manufacturing spanning single and two echelon supply chain systems have been developed and analyzed. Experiments using perfect data were conducted to show the correctness of the OSF platform design and implementation. Simple, but realistic experiments have also been conducted. They highlight the kinds of supply chain dynamics that can be evaluated using discrete event process simulation, linear programming optimization, and heuristics forecasting models.
ContributorsSmith, James Melkon (Author) / Sarjoughian, Hessam S. (Thesis advisor) / Davulcu, Hasan (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2012
151431-Thumbnail Image.png
Description
Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same

Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same input. To make things worse, the target erroneous cases may happen just in a few specific runs. Besides, the randomness of user interactions makes the whole debugging procedure more unpredictable. Thus, debugging a multiple threaded application is a tough and challenging task. This thesis introduces a replay mechanism for debugging user interactive multiple threaded Android applications. The approach is based on the 'Lamport Clock' concept, 'Event Driven' implementation and 'Client-Server' architecture. The debugger tool described in this thesis provides a user controlled debugging environment where users or developers are allowed to use modified record application to generate a log file. During the record time, all the necessary events like thread creation, synchronization and user input are recorded. Therefore, based on the information contained in the generated log files, the debugger tool can replay the application off-line since log files provide the deterministic order of execution. In this case, user or developers can replay an application as many times as they need to pinpoint the errors in the applications.
ContributorsLu, He (Author) / Lee, Yann-Hang (Thesis advisor) / Fainekos, Georgios (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012
151528-Thumbnail Image.png
Description
The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration

The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration allowing maximum CHF while reducing pressure drop is sought. A perturbation of the channel diameter is employed to examine CHF and pressure drop relationships from the literature with the aim of identifying those adequately general and suitable for use in a scenario with an expanding channel. Several CHF criteria are identified which predict an optimizable channel expansion, though many do not. Pressure drop relationships admit improvement with expansion, and no optimum presents itself. The relevant physical phenomena surrounding flow boiling pressure drop are considered, and a balance of dimensionless numbers is presented that may be of qualitative use. The design, fabrication, inspection, and experimental evaluation of four copper microchannel arrays of different channel expansion rates with R-134a refrigerant is presented. Optimum rates of expansion which maximize the critical heat flux are considered at multiple flow rates, and experimental results are presented demonstrating optima. The effect of expansion on the boiling number is considered, and experiments demonstrate that expansion produces a notable increase in the boiling number in the region explored, though no optima are observed. Significant decrease in the pressure drop across the evaporator is observed with the expanding channels, and no optima appear. Discussion of the significance of this finding is presented, along with possible avenues for future work.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Baer, Steven (Committee member) / Chamberlin, Ralph (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
152324-Thumbnail Image.png
Description
With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human

With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human to provide it some supervisory parameters that modify the degree of autonomy or allocate extra tasks to the robot. In this regard, this thesis presents an approach to include a provision to accept and incorporate such human inputs and modify the navigation functions of the robot accordingly. Concepts such as applying kinematical constraints while planning paths, traversing of unknown areas with an intent of maximizing field of view, performing complex tasks on command etc. have been examined and implemented. The approaches have been tested in Robot Operating System (ROS), using robots such as the iRobot Create, Personal Robotics (PR2) etc. Simulations and experimental demonstrations have proved that this approach is feasible for solving some of the existing problems and that it certainly can pave way to further research for enhancing functionality.
ContributorsVemprala, Sai Hemachandra (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152472-Thumbnail Image.png
Description
ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the

ABSTRACT Electronics especially mobile electronics such as smart phones, tablet PCs, notebooks and digital cameras are undergoing rapid development nowadays and have thoroughly changed our lives. With the requirement of more transistors, higher power, smaller size, lighter weight and even bendability, thermal management of these devices became one of the key challenges. Compared to active heat management system, heat pipe, which is a passive fluidic system, is considered promising to solve this problem. However, traditional heat pipes have size, weight and capillary limitation. Thus new type of heat pipe with smaller size, lighter weight and higher capillary pressure is needed. Nanofiber has been proved with superior properties and has been applied in multiple areas. This study discussed the possibility of applying nanofiber in heat pipe as new wick structure. In this study, a needleless electrospinning device with high productivity rate was built onsite to systematically investigate the effect of processing parameters on fiber properties as well as to generate nanofiber mat to evaluate its capability in electronics cooling. Polyethylene oxide (PEO) and Polyvinyl Alcohol (PVA) nanofibers were generated. Tensiometer was used for wettability measurement. The results show that independent parameters including spinneret type, working distance, solution concentration and polymer type are strongly correlated with fiber morphology compared to other parameters. The results also show that the fabricated nanofiber mat has high capillary pressure.
ContributorsSun, Tianwei (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2014
153438-Thumbnail Image.png
Description
Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and

Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and temperature effects are far more important, thus damage and wear mechanisms of polymers under cavitating flows are significantly different. In this work, heat-driven failure caused by viscous dissipation and void nucleation resulting from tensile stresses arising from stress wave reflections are investigated as two possible material failure mechanisms.

As a first step in developing a fundamental understanding of the cavitation erosion process on polymer surfaces, simulations are performed of the collapse of individual bubbles against a compliant surface e.g. metallic substrates with polyurea coatings. The surface response of collapse-driven impact loads is represented by a idealized, time-dependent, Gaussian pressure distribution on the surface. A two-dimensional distribution of load radii and durations is considered corresponding to characteristic of cavitating flows accelerated erosion experiments. Finite element simulations are performed to fit a response curve that relates the loading parameters to the energy dissipated in the coating and integrated with collapse statistics to generate an expected heat input into the coating.

The impulsive pressure, which is generated due to bubble collapse, impacts the material and generates intense shock waves. The stress waves within the material reflects by interaction with the substrate. A transient region of high tensile stress is produced by the interaction of these waves. Simulations suggests that maximum hydrostatic tension which cause failure of polyurea layer is observed in thick coating. Also, the dissipated viscous energy and corresponding temperature rise in a polyurea is calculated, and it is concluded that temperature has influence on deformation.
ContributorsPanwar, Ajay (Author) / Oswald, Jay (Thesis advisor) / Dooley, Kevin (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015