This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 88
151690-Thumbnail Image.png
Description
Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems.

Practical communication systems are subject to errors due to imperfect time alignment among the communicating nodes. Timing errors can occur in different forms depending on the underlying communication scenario. This doctoral study considers two different classes of asynchronous systems; point-to-point (P2P) communication systems with synchronization errors, and asynchronous cooperative systems. In particular, the focus is on an information theoretic analysis for P2P systems with synchronization errors and developing new signaling solutions for several asynchronous cooperative communication systems. The first part of the dissertation presents several bounds on the capacity of the P2P systems with synchronization errors. First, binary insertion and deletion channels are considered where lower bounds on the mutual information between the input and output sequences are computed for independent uniformly distributed (i.u.d.) inputs. Then, a channel suffering from both synchronization errors and additive noise is considered as a serial concatenation of a synchronization error-only channel and an additive noise channel. It is proved that the capacity of the original channel is lower bounded in terms of the synchronization error-only channel capacity and the parameters of both channels. On a different front, to better characterize the deletion channel capacity, the capacity of three independent deletion channels with different deletion probabilities are related through an inequality resulting in the tightest upper bound on the deletion channel capacity for deletion probabilities larger than 0.65. Furthermore, the first non-trivial upper bound on the 2K-ary input deletion channel capacity is provided by relating the 2K-ary input deletion channel capacity with the binary deletion channel capacity through an inequality. The second part of the dissertation develops two new relaying schemes to alleviate asynchronism issues in cooperative communications. The first one is a single carrier (SC)-based scheme providing a spectrally efficient Alamouti code structure at the receiver under flat fading channel conditions by reducing the overhead needed to overcome the asynchronism and obtain spatial diversity. The second one is an orthogonal frequency division multiplexing (OFDM)-based approach useful for asynchronous cooperative systems experiencing excessive relative delays among the relays under frequency-selective channel conditions to achieve a delay diversity structure at the receiver and extract spatial diversity.
ContributorsRahmati, Mojtaba (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2013
152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
ContributorsZhou, Shan (Author) / Ying, Lei (Thesis advisor) / Zhang, Yanchao (Committee member) / Zhang, Junshan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2013
152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151982-Thumbnail Image.png
Description
The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.
ContributorsZhang, Rui (Author) / Zhang, Yanchao (Thesis advisor) / Duman, Tolga Mete (Committee member) / Xue, Guoliang (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151971-Thumbnail Image.png
Description
Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the proposed PPF-IMH algorithm improves the root mean-squared error (RMSE) estimation performance, and we demonstrate that a parallel implementation of the algorithm results in significant reduction in inter-processor communication. We apply our implementation on a Xilinx Virtex-5 field programmable gate array (FPGA) platform to demonstrate that, for a one-dimensional problem, the PPF-IMH architecture with four processing elements and 1,000 particles can process input samples at 170 kHz by using less than 5% FPGA resources. We also apply the proposed PPF-IMH to waveform-agile sensing to achieve real-time tracking of dynamic targets with high RMSE tracking performance. We next integrate the PPF-IMH algorithm to track the dynamic parameters in neural sensing when the number of neural dipole sources is known. We analyze the computational complexity of a PF based method and propose the use of multiple particle filtering (MPF) to reduce the complexity. We demonstrate the improved performance of MPF using numerical simulations with both synthetic and real data. We also propose an FPGA implementation of the MPF algorithm and show that the implementation supports real-time tracking. For the more realistic scenario of automatically estimating an unknown number of time-varying neural dipole sources, we propose a new approach based on the probability hypothesis density filtering (PHDF) algorithm. The PHDF is implemented using particle filtering (PF-PHDF), and it is applied in a closed-loop to first estimate the number of dipole sources and then their corresponding amplitude, location and orientation parameters. We demonstrate the improved tracking performance of the proposed PF-PHDF algorithm and map it onto a Xilinx Virtex-5 FPGA platform to show its real-time implementation potential. Finally, we propose the use of sensor scheduling and compressive sensing techniques to reduce the number of active sensors, and thus overall power consumption, of electroencephalography (EEG) systems. We propose an efficient sensor scheduling algorithm which adaptively configures EEG sensors at each measurement time interval to reduce the number of sensors needed for accurate tracking. We combine the sensor scheduling method with PF-PHDF and implement the system on an FPGA platform to achieve real-time tracking. We also investigate the sparsity of EEG signals and integrate compressive sensing with PF to estimate neural activity. Simulation results show that both sensor scheduling and compressive sensing based methods achieve comparable tracking performance with significantly reduced number of sensors.
ContributorsMiao, Lifeng (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Thesis advisor) / Zhang, Junshan (Committee member) / Bliss, Daniel (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2013
151296-Thumbnail Image.png
Description
Scaling of the classical planar MOSFET below 20 nm gate length is facing not only technological difficulties but also limitations imposed by short channel effects, gate and junction leakage current due to quantum tunneling, high body doping induced threshold voltage variation, and carrier mobility degradation. Non-classical multiple-gate structures such as

Scaling of the classical planar MOSFET below 20 nm gate length is facing not only technological difficulties but also limitations imposed by short channel effects, gate and junction leakage current due to quantum tunneling, high body doping induced threshold voltage variation, and carrier mobility degradation. Non-classical multiple-gate structures such as double-gate (DG) FinFETs and surrounding gate field-effect-transistors (SGFETs) have good electrostatic integrity and are an alternative to planar MOSFETs for below 20 nm technology nodes. Circuit design with these devices need compact models for SPICE simulation. In this work physics based compact models for the common-gate symmetric DG-FinFET, independent-gate asymmetric DG-FinFET, and SGFET are developed. Despite the complex device structure and boundary conditions for the Poisson-Boltzmann equation, the core structure of the DG-FinFET and SGFET models, are maintained similar to the surface potential based compact models for planar MOSFETs such as SP and PSP. TCAD simulations show differences between the transient behavior and the capacitance-voltage characteristics of bulk and SOI FinFETs if the gate-voltage swing includes the accumulation region. This effect can be captured by a compact model of FinFETs only if it includes the contribution of both types of carriers in the Poisson-Boltzmann equation. An accurate implicit input voltage equation valid in all regions of operation is proposed for common-gate symmetric DG-FinFETs with intrinsic or lightly doped bodies. A closed-form algorithm is developed for solving the new input voltage equation including ambipolar effects. The algorithm is verified for both the surface potential and its derivatives and includes a previously published analytical approximation for surface potential as a special case when ambipolar effects can be neglected. The symmetric linearization method for common-gate symmetric DG-FinFETs is developed in a form free of the charge-sheet approximation present in its original formulation for bulk MOSFETs. The accuracy of the proposed technique is verified by comparison with exact results. An alternative and computationally efficient description of the boundary between the trigonometric and hyperbolic solutions of the Poisson-Boltzmann equation for the independent-gate asymmetric DG-FinFET is developed in terms of the Lambert W function. Efficient numerical algorithm is proposed for solving the input voltage equation. Analytical expressions for terminal charges of an independent-gate asymmetric DG-FinFET are derived. The new charge model is C-infinity continuous, valid for weak as well as for strong inversion condition of both the channels and does not involve the charge-sheet approximation. This is accomplished by developing the symmetric linearization method in a form that does not require identical boundary conditions at the two Si-SiO2 interfaces and allows for volume inversion in the DG-FinFET. Verification of the model is performed with both numerical computations and 2D TCAD simulations under a wide range of biasing conditions. The model is implemented in a standard circuit simulator through Verilog-A code. Simulation examples for both digital and analog circuits verify good model convergence and demonstrate the capabilities of new circuit topologies that can be implemented using independent-gate asymmetric DG-FinFETs.
ContributorsDessai, Gajanan (Author) / Gildenblat, Gennady (Committee member) / McAndrew, Colin (Committee member) / Cao, Yu (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
151410-Thumbnail Image.png
Description
Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there

Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there is not a single straightforward solution to the problem. Products that are tested have several application domains and distinct customer profiles. Some products are required to operate for long periods of time while others are required to be low cost and optimized for low cost. Multitude of constraints and goals make it impossible to find a single solution that work for all cases. Hence, test development/optimization is typically design/circuit dependent and even process specific. Therefore, test optimization cannot be performed using a single test approach, but necessitates a diversity of approaches. This works aims at addressing test cost minimization and test quality improvement at various levels. In the first chapter of the work, we investigate pre-silicon strategies, such as design for test and pre-silicon statistical simulation optimization. In the second chapter, we investigate efficient post-silicon test strategies, such as adaptive test, adaptive multi-site test, outlier analysis, and process shift detection/tracking.
ContributorsYilmaz, Ender (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012
151542-Thumbnail Image.png
Description
Asymptotic comparisons of ergodic channel capacity at high and low signal-to-noise ratios (SNRs) are provided for several adaptive transmission schemes over fading channels with general distributions, including optimal power and rate adaptation, rate adaptation only, channel inversion and its variants. Analysis of the high-SNR pre-log constants of the ergodic capacity

Asymptotic comparisons of ergodic channel capacity at high and low signal-to-noise ratios (SNRs) are provided for several adaptive transmission schemes over fading channels with general distributions, including optimal power and rate adaptation, rate adaptation only, channel inversion and its variants. Analysis of the high-SNR pre-log constants of the ergodic capacity reveals the existence of constant capacity difference gaps among the schemes with a pre-log constant of 1. Closed-form expressions for these high-SNR capacity difference gaps are derived, which are proportional to the SNR loss between these schemes in dB scale. The largest one of these gaps is found to be between the optimal power and rate adaptation scheme and the channel inversion scheme. Based on these expressions it is shown that the presence of space diversity or multi-user diversity makes channel inversion arbitrarily close to achieving optimal capacity at high SNR with sufficiently large number of antennas or users. A low-SNR analysis also reveals that the presence of fading provably always improves capacity at sufficiently low SNR, compared to the additive white Gaussian noise (AWGN) case. Numerical results are shown to corroborate our analytical results. This dissertation derives high-SNR asymptotic average error rates over fading channels by relating them to the outage probability, under mild assumptions. The analysis is based on the Tauberian theorem for Laplace-Stieltjes transforms which is grounded on the notion of regular variation, and applies to a wider range of channel distributions than existing approaches. The theory of regular variation is argued to be the proper mathematical framework for finding sufficient and necessary conditions for outage events to dominate high-SNR error rate performance. It is proved that the diversity order being d and the cumulative distribution function (CDF) of the channel power gain having variation exponent d at 0 imply each other, provided that the instantaneous error rate is upper-bounded by an exponential function of the instantaneous SNR. High-SNR asymptotic average error rates are derived for specific instantaneous error rates. Compared to existing approaches in the literature, the asymptotic expressions are related to the channel distribution in a much simpler manner herein, and related with outage more intuitively. The high-SNR asymptotic error rate is also characterized under diversity combining schemes with the channel power gain of each branch having a regularly varying CDF. Numerical results are shown to corroborate our theoretical analysis. This dissertation studies several problems concerning channel inclusion, which is a partial ordering between discrete memoryless channels (DMCs) proposed by Shannon. Specifically, majorization-based conditions are derived for channel inclusion between certain DMCs. Furthermore, under general conditions, channel equivalence defined through Shannon ordering is shown to be the same as permutation of input and output symbols. The determination of channel inclusion is considered as a convex optimization problem, and the sparsity of the weights related to the representation of the worse DMC in terms of the better one is revealed when channel inclusion holds between two DMCs. For the exploitation of this sparsity, an effective iterative algorithm is established based on modifying the orthogonal matching pursuit algorithm. The extension of channel inclusion to continuous channels and its application in ordering phase noises are briefly addressed.
ContributorsZhang, Yuan (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2013
152459-Thumbnail Image.png
Description
Non-volatile memories (NVM) are widely used in modern electronic devices due to their non-volatility, low static power consumption and high storage density. While Flash memories are the dominant NVM technology, resistive memories such as phase change access memory (PRAM) and spin torque transfer random access memory (STT-MRAM) are gaining ground.

Non-volatile memories (NVM) are widely used in modern electronic devices due to their non-volatility, low static power consumption and high storage density. While Flash memories are the dominant NVM technology, resistive memories such as phase change access memory (PRAM) and spin torque transfer random access memory (STT-MRAM) are gaining ground. All these technologies suffer from reliability degradation due to process variations, structural limits and material property shift. To address the reliability concerns of these NVM technologies, multi-level low cost solutions are proposed for each of them. My approach consists of first building a comprehensive error model. Next the error characteristics are exploited to develop low cost multi-level strategies to compensate for the errors. For instance, for NAND Flash memory, I first characterize errors due to threshold voltage variations as a function of the number of program/erase cycles. Next a flexible product code is designed to migrate to a stronger ECC scheme as program/erase cycles increases. An adaptive data refresh scheme is also proposed to improve memory reliability with low energy cost for applications with different data update frequencies. For PRAM, soft errors and hard errors models are built based on shifts in the resistance distributions. Next I developed a multi-level error control approach involving bit interleaving and subblock flipping at the architecture level, threshold resistance tuning at the circuit level and programming current profile tuning at the device level. This approach helped reduce the error rate significantly so that it was now sufficient to use a low cost ECC scheme to satisfy the memory reliability constraint. I also studied the reliability of a PRAM+DRAM hybrid memory system and analyzed the tradeoffs between memory performance, programming energy and lifetime. For STT-MRAM, I first developed an error model based on process variations. I developed a multi-level approach to reduce the error rates that consisted of increasing the W/L ratio of the access transistor, increasing the voltage difference across the memory cell and adjusting the current profile during write operation. This approach enabled use of a low cost BCH based ECC scheme to achieve very low block failure rates.
ContributorsYang, Chengen (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Committee member) / Ogras, Umit Y. (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2014
152275-Thumbnail Image.png
Description
With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core

With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core material, amorphous Co-Zr-Ta-B, was incorporated into on-chip and in-package inductors in order to scale down inductors and improve inductors performance in both inductance density and quality factor. With two layers of 500 nm Co-Zr-Ta-B films a 3.5X increase in inductance and a 3.9X increase in quality factor over inductors without magnetic films were measured at frequencies as high as 1 GHz. By laminating technology, up to 9.1X increase in inductance and more than 5X increase in quality factor (Q) were obtained from stripline inductors incorporated with 50 nm by 10 laminated films with a peak Q at 300 MHz. It was also demonstrated that this peak Q can be pushed towards high frequency as far as 1GHz by a combination of patterning magnetic films into fine bars and laminations. The role of magnetic vias in magnetic flux and eddy current control was investigated by both simulation and experiment using different patterning techniques and by altering the magnetic via width. Finger-shaped magnetic vias were designed and integrated into on-chip RF inductors improving the frequency of peak quality factor from 400 MHz to 800 MHz without sacrificing inductance enhancement. Eddy current and magnetic flux density in different areas of magnetic vias were analyzed by HFSS 3D EM simulation. With optimized magnetic vias, high frequency response of up to 2 GHz was achieved. Furthermore, the effect of applied magnetic field on on-chip inductors was investigated for high power applications. It was observed that as applied magnetic field along the hard axis (HA) increases, inductance maintains similar value initially at low fields, but decreases at larger fields until the magnetic films become saturated. The high frequency quality factor showed an opposite trend which is correlated to the reduction of ferromagnetic resonant absorption in the magnetic film. In addition, experiments showed that this field-dependent inductance change varied with different patterned magnetic film structures, including bars/slots and fingers structures. Magnetic properties of Co-Zr-Ta-B films on standard organic package substrates including ABF and polyimide were also characterized. Effects of substrate roughness and stress were analyzed and simulated which provide strategies for integrating Co-Zr-Ta-B into package inductors and improving inductors performance. Stripline and spiral inductors with Co-Zr-Ta-B films were fabricated on both ABF and polyimide substrates. Maximum 90% inductance increase in hundreds MHz frequency range were achieved in stripline inductors which are suitable for power delivery applications. Spiral inductors with Co-Zr-Ta-B films showed 18% inductance increase with quality factor of 4 at frequency up to 3 GHz.
ContributorsWu, Hao (Author) / Yu, Hongbin (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Chickamenahalli, Shamala (Committee member) / Arizona State University (Publisher)
Created2013