This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 95
151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151694-Thumbnail Image.png
Description
This document is intended to show the various kinds of stylistically appropriate melodic and rhythmic ornamentation that can be used in the improvisation of the Sarabandes by J.S. Bach. Traditional editions of Bach's and other Baroque-era keyboard works have reflected evolving historical trends. The historical performance movement and other attempts

This document is intended to show the various kinds of stylistically appropriate melodic and rhythmic ornamentation that can be used in the improvisation of the Sarabandes by J.S. Bach. Traditional editions of Bach's and other Baroque-era keyboard works have reflected evolving historical trends. The historical performance movement and other attempts to "clean up" pre-1950s romanticized performances have greatly limited the freedom and experimentation that was the original intention of these dances. Prior to this study, few ornamented editions of these works have been published. Although traditional practices do not necessarily encourage classical improvisation in performance I argue that manipulation of the melodic and rhythmic layers over the established harmonic progressions will not only provide diversity within the individual dance movements, but also further engage the ears of the performer and listener which encourages further creative exploration. I will focus this study on the ornamentation of all six Sarabandes from J.S. Bach's French Suites and show how various types of melodic and rhythmic variation can provide aurally pleasing alternatives to the composed score without disrupting the harmonic fluency. The author intends this document to be used as a pedagogical tool and the fully ornamented Sarabandes from J.S. Bach's French Suites are included with this document.
ContributorsOakley, Ashley (Author) / Meir, Baruch (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Pagano, Caio (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151640-Thumbnail Image.png
Description
The purpose of the paper is to outline the process that was used to write a reduction for Henry Brant's Concerto for Alto Saxophone and Orchestra, to describe the improvements in saxophone playing since the premiere of the piece, and to demonstrate the necessity of having a reduction in the

The purpose of the paper is to outline the process that was used to write a reduction for Henry Brant's Concerto for Alto Saxophone and Orchestra, to describe the improvements in saxophone playing since the premiere of the piece, and to demonstrate the necessity of having a reduction in the process of learning a concerto. The Concerto was inspired by internationally known saxophonist, Sigurd Rascher, who demonstrated for Brant the extent of his abilities on the saxophone. These abilities included use of four-octave range and two types of extended techniques: slap-tonguing and flutter-tonguing. Brant incorporated all three elements in his Concerto, and believed that only Rascher had the command over the saxophone needed to perform the piece. To prevent the possibility of an unsuccessful performance, Brant chose to make the piece unavailable to saxophonists by leaving the Concerto without a reduction. Subsequently, there were no performances of this piece between 1953 and 2001. In 2011, the two directors of Brant's Estate decided to allow for a reduction to be written for the piece so that it would become more widely available to saxophonists.
ContributorsAmes, Elizabeth (Pianist) (Author) / Ryan, Russell (Thesis advisor) / Levy, Benjamin (Committee member) / Hill, Gary (Committee member) / Campbell, Andrew (Committee member) / Arizona State University (Publisher)
Created2013
151551-Thumbnail Image.png
Description
The teaching of singing remained remarkably stable until, at the end of the twentieth century, advances in the understanding of voice science stimulated dramatic changes in approach to vocal pedagogy. Previously, the technology needed to accurately measure physiologic change within the larynx and breath-support musculature during the process of singing

The teaching of singing remained remarkably stable until, at the end of the twentieth century, advances in the understanding of voice science stimulated dramatic changes in approach to vocal pedagogy. Previously, the technology needed to accurately measure physiologic change within the larynx and breath-support musculature during the process of singing simply did not exist. Any prior application of scientific study to the voice was based primarily upon auditory evaluation, rather than objective data accumulation and assessment. After a centuries-long history, within a span of twenty years, vocal pedagogy evolved from an approach solely derived from subjective, auditory evidence to an application grounded in scientific data. By means of analysis of significant publications by Richard Miller, Robert Sataloff, and Ingo Titze, as well as articles from The Journal of Singing and The Journal of Voice, I establish a baseline of scientific knowledge and pedagogic practice ca. 1980. Analysis and comparison of a timeline of advancement in scientific insight and the discussion of science in pedagogical texts, 1980-2000, reveal the extent to which voice teachers have dramatically changed their method of instruction. I posit that voice pedagogy has undergone a fundamental change, from telling the student only what to do, via auditory demonstration and visual imagery, to validating with scientific data how and why students should change their vocal approach. The consequence of this dramatic pedagogic evolution has produced singers who comprehend more fully the science of their art.
ContributorsVelarde, Rachel (Author) / Doan, Jerry (Thesis advisor) / Campbell, Andrew (Committee member) / Solis, Theodore (Committee member) / Elgar Kopta, Anne (Committee member) / Britton, David (Committee member) / Arizona State University (Publisher)
Created2013
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152731-Thumbnail Image.png
Description
The Sonata for Violin and Piano in E-flat Major, Op. 18 (1888), was the last major work of chamber music by Richard Strauss (1864-1949). Although for only two instruments, the Sonata reflects Strauss's growing interest in symphonic writing both in his tone poems and orchestral songs, anticipating his style of

The Sonata for Violin and Piano in E-flat Major, Op. 18 (1888), was the last major work of chamber music by Richard Strauss (1864-1949). Although for only two instruments, the Sonata reflects Strauss's growing interest in symphonic writing both in his tone poems and orchestral songs, anticipating his style of orchestration and his expressive use of tone colors. This study examines instances of orchestral writing in the piano and makes suggestions for their performance. An overview of Strauss's compositions, from his early chamber music to the `heroic' symphonic works, places the Sonata in context. An analytical description of each of the Sonata's three movements shows the structure and content of this large work and provides the framework for examination of the orchestral effects in the piano. Comparison of excerpts from the Sonata with passages from Strauss's orchestral writing in Don Juan (1889), "Cäcilie," "Morgen!," and "Lied der Frauen" leads to suggestions for the collaborative pianist of ways to re-create the various orchestral effects.
ContributorsNixon, Thomas (Pianist) (Author) / Ryan, Russell R (Thesis advisor) / Campbell, Andrew (Committee member) / FitzPatrick, Carole (Committee member) / Hamilton, Robert (Committee member) / Holbrook, Amy (Committee member) / Arizona State University (Publisher)
Created2014
152984-Thumbnail Image.png
Description
Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for

Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for performance differences are often difficult to identify. For example, many patterns of muscle activity can potentially result in similar behavioral output. Muscle activity is one factor contributing to forces in tissues that could contribute to injury. However, experimental measurements of muscle activity and force for humans are extremely challenging. Models of the musculoskeletal system can be used to make specific estimates of neuromuscular coordination and musculoskeletal forces. However, existing models cannot easily be used to describe complex, multi-finger gestures such as those used for multi-touch human computer interaction (HCI) tasks. We therefore seek to develop a dynamic musculoskeletal simulation capable of estimating internal musculoskeletal loading during multi-touch tasks involving multi digits of the hand, and use the simulation to better understand complex multi-touch and gestural movements, and potentially guide the design of technologies the reduce injury risk. To accomplish these, we focused on three specific tasks. First, we aimed at determining the optimal index finger muscle attachment points within the context of the established, validated OpenSim arm model using measured moment arm data taken from the literature. Second, we aimed at deriving moment arm values from experimentally-measured muscle attachments and using these values to determine muscle-tendon paths for both extrinsic and intrinsic muscles of middle, ring and little fingers. Finally, we aimed at exploring differences in hand muscle activation patterns during zooming and rotating tasks on the tablet computer in twelve subjects. Towards this end, our musculoskeletal hand model will help better address the neuromuscular coordination, safe gesture performance and internal loadings for multi-touch applications.
ContributorsYi, Chong-hwan (Author) / Jindrich, Devin L. (Thesis advisor) / Artemiadis, Panagiotis K. (Thesis advisor) / Phelan, Patrick (Committee member) / Santos, Veronica J. (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2014
Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
152439-Thumbnail Image.png
Description
As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change

As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided.
ContributorsAn, Yonghao (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Phelan, Patrick (Committee member) / Wang, Yinming (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
150292-Thumbnail Image.png
Description
Bohuslav Martinù (1890-1959) was a prolific composer who wrote nearly 100 works for piano. His highly imaginative and eclectic style blends elements of the Baroque, Impressionism, Twentieth-century idioms and Czech folk music. His music is fresh and appealing to the listener, yet it remains intriguing as to how all the

Bohuslav Martinù (1890-1959) was a prolific composer who wrote nearly 100 works for piano. His highly imaginative and eclectic style blends elements of the Baroque, Impressionism, Twentieth-century idioms and Czech folk music. His music is fresh and appealing to the listener, yet it remains intriguing as to how all the elements are combined in a cohesive manner. Martinù himself provides clues to his compositional process. He believed in pure musical expression and the intensity of the musical idea, without the need for extra-musical or programmatic connotations. He espoused holistic and organic views toward musical perception and composition, at times referring to a work as an "organism." This study examines Martinù's piano style in light of his many diverse influences and personal philosophy. The first portion of this paper discusses Martinù's overall style through several piano miniatures written throughout his career. It takes into consideration the composer's personal background, musical influences and aesthetic convictions. The second portion focuses specifically on Martinù's first large-scale work for piano, the Fantasie et Toccata, H. 281. Written during a time in which Martinù was black-listed by the Nazis and forced to flee Europe, this piece bears witness to the chaotic events of WWII through its complexity and intensity of character. The discussion and analysis of the Fantasie et Toccata intends to serve as a guide to interpretation for the performer or listener and also seeks to promote the piano music of Bohuslav Martinù to a wider audience.
ContributorsCrane-Waleczek, Jennifer (Author) / Hamilton, Robert (Thesis advisor) / Hackbarth, Glenn (Committee member) / Meyer Thompson, Janice (Committee member) / Norton, Kay (Committee member) / Campbell, Andrew (Committee member) / Arizona State University (Publisher)
Created2011