This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 100
153498-Thumbnail Image.png
Description
Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric interfaces have struggled to achieve both enhanced

functionality and long-term reliability. As demands in myoelectric interfaces trend

toward simultaneous and proportional control of compliant robots, robust processing

of multi-muscle coordinations, or synergies, plays a larger role in the success of the

control scheme. This dissertation presents a framework enhancing the utility of myoelectric

interfaces by exploiting motor skill learning and

exible muscle synergies for

reliable long-term simultaneous and proportional control of multifunctional compliant

robots. The interface is learned as a new motor skill specic to the controller,

providing long-term performance enhancements without requiring any retraining or

recalibration of the system. Moreover, the framework oers control of both motion

and stiness simultaneously for intuitive and compliant human-robot interaction. The

framework is validated through a series of experiments characterizing motor learning

properties and demonstrating control capabilities not seen previously in the literature.

The results validate the approach as a viable option to remove the trade-o

between functionality and reliability that have hindered state-of-the-art myoelectric

interfaces. Thus, this research contributes to the expansion and enhancement of myoelectric

controlled applications beyond commonly perceived anthropomorphic and

\intuitive control" constraints and into more advanced robotic systems designed for

everyday tasks.
ContributorsIson, Mark (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Greger, Bradley (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
155910-Thumbnail Image.png
Description
The interaction between humans and robots has become an important area of research as the diversity of robotic applications has grown. The cooperation of a human and robot to achieve a goal is an important area within the physical human-robot interaction (pHRI) field. The expansion of this field is toward

The interaction between humans and robots has become an important area of research as the diversity of robotic applications has grown. The cooperation of a human and robot to achieve a goal is an important area within the physical human-robot interaction (pHRI) field. The expansion of this field is toward moving robotics into applications in unstructured environments. When humans cooperate with each other, often there are leader and follower roles. These roles may change during the task. This creates a need for the robotic system to be able to exchange roles with the human during a cooperative task. The unstructured nature of the new applications in the field creates a need for robotic systems to be able to interact in six degrees of freedom (DOF). Moreover, in these unstructured environments, the robotic system will have incomplete information. This means that it will sometimes perform an incorrect action and control methods need to be able to correct for this. However, the most compelling applications for robotics are where they have capabilities that the human does not, which also creates the need for robotic systems to be able to correct human action when it detects an error. Activity in the brain precedes human action. Utilizing this activity in the brain can classify the type of interaction desired by the human. For this dissertation, the cooperation between humans and robots is improved in two main areas. First, the ability for electroencephalogram (EEG) to determine the desired cooperation role with a human is demonstrated with a correct classification rate of 65%. Second, a robotic controller is developed to allow the human and robot to cooperate in six DOF with asymmetric role exchange. This system allowed human-robot cooperation to perform a cooperative task at 100% correct rate. High, medium, and low levels of robotic automation are shown to affect performance, with the human making the greatest numbers of errors when the robotic system has a medium level of automation.
ContributorsWhitsell, Bryan Douglas (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Polygerinos, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
156151-Thumbnail Image.png
Description
Alloying in semiconductors has enabled many civilian technologies in optoelectronic, photonic fields and more. While the phenomenon of alloying is well established in traditional bulk semiconductors, owing to vastly available ternary phase diagrams, the ability to alloy in 2D systems are less clear. Recently anisotropic materials such as ReS2 and

Alloying in semiconductors has enabled many civilian technologies in optoelectronic, photonic fields and more. While the phenomenon of alloying is well established in traditional bulk semiconductors, owing to vastly available ternary phase diagrams, the ability to alloy in 2D systems are less clear. Recently anisotropic materials such as ReS2 and TiS3 have been extensively studied due to their direct-gap semiconductor and high mobility behaviors. This work is a report on alloys of ReS2 & ReSe2 and TiS3 &TiSe3.

Alloying selenium into ReS2 in the creation of ReS2xSe2-x, tunes the band gap and changes its vibrational spectrum. Depositing this alloy using bottom up approach has resulted in the loss of crystallinity. This loss of crystallinity was evidenced by grain boundaries and point defect shown by TEM images.

Also, in the creation of TiS3xSe3-x, by alloying Se into TiS3, a fixed ratio of 8% selenium deposit into TiS3 host matrix is observed. This is despite the vastly differing precursor amounts and growth temperatures, as evinced by detailed TEM, EDAX, TEM diffraction, and Raman spectroscopy measurements. This unusual behavior contrasts with other well-known layered material systems such as MoSSe, WMoS2 where continuous alloying can be attained. Cluster expansion theory calculations suggest that only limited composition (x) can be achieved. Considering the fact that TiSe3 vdW crystals have not been synthesized in the past, these alloying rejections can be attributed to energetic instability in the ternary phase diagrams estimated by calculations performed. Overall findings highlight potential means and challenges in achieving stable alloying in promising direct gap and high carrier mobility TiS3 materials.
ContributorsAgarwal, Ashutosh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
156291-Thumbnail Image.png
Description
Research literature was reviewed to find recommended tools and technologies for operating Unmanned Aerial Systems (UAS) fleets in an urban environment. However, restrictive legislation prohibits fully autonomous flight without an operator. Existing literature covers considerations for operating UAS fleets in a controlled environment, with an emphasis on the effect different

Research literature was reviewed to find recommended tools and technologies for operating Unmanned Aerial Systems (UAS) fleets in an urban environment. However, restrictive legislation prohibits fully autonomous flight without an operator. Existing literature covers considerations for operating UAS fleets in a controlled environment, with an emphasis on the effect different networking approaches have on the topology of the UAS network. The primary network topology used to implement UAS communications is 802.11 protocols, which can transmit telemetry and a video stream using off the shelf hardware. Other implementations use low-frequency radios for long distance communication, or higher latency 4G LTE modems to access existing network infrastructure. However, a gap remains testing different network topologies outside of a controlled environment.

With the correct permits in place, further research can explore how different UAS network topologies behave in an urban environment when implemented with off the shelf UAS hardware. In addition to testing different network topologies, this thesis covers the implementation of building a secure, scalable system using modern cloud computation tools and services capable of supporting a variable number of UAS. The system also supports the end-to-end simulation of the system considering factors such as battery life and realistic UAS kinematics. The implementation of the system leads to new findings needed to deploy UAS fleets in urban environments.
ContributorsD'Souza, Daniel (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2018
156560-Thumbnail Image.png
Description
This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are

This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are designed such that the output trajectories of all the nonlinear models are guaranteed to be distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise. I propose a two-step approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics by uncertain affine models, as abstractions that preserve all its system behaviors such that any discrimination guarantees for the affine abstraction also hold for the original nonlinear system. Then, I propose a novel solution in the form of a mixed-integer linear program (MILP) to the active model discrimination problem for uncertain affine models, which includes the affine abstraction and thus, the nonlinear models. Finally, I demonstrate the effectiveness of our approach for identifying the intention of other vehicles in a highway lane changing scenario. For the abstraction, I explore two approaches. In the first approach, I construct the bounding planes using a Mixed-Integer Nonlinear Problem (MINLP) formulation of the given system with appropriately designed constraints. For the second approach, I solve a linear programming (LP) problem that over-approximates the nonlinear function at only the grid points of a mesh with a given resolution and then accounting for the entire domain via an appropriate correction term. To achieve a desired approximation accuracy, we also iteratively subdivide the domain into subregions. This method applies to nonlinear functions with different degrees of smoothness, including Lipschitz continuous functions, and improves on existing approaches by enabling the use of tighter bounds. Finally, we compare the effectiveness of this approach with the existing optimization-based methods in simulation and illustrate its applicability for estimator design.
ContributorsSingh, Kanishka Raj (Author) / Yong, Sze Zheng (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2018
156573-Thumbnail Image.png
Description
In this thesis, different H∞ observers for time-delay systems are implemented and

their performances are compared. Equations that can be used to calculate observer gains are mentioned. Different methods that can be used to implement observers for time-delay systems are illustrated. Various stable and unstable systems are used and H∞ bounds

In this thesis, different H∞ observers for time-delay systems are implemented and

their performances are compared. Equations that can be used to calculate observer gains are mentioned. Different methods that can be used to implement observers for time-delay systems are illustrated. Various stable and unstable systems are used and H∞ bounds are calculated using these observer designing methods. Delays are assumed to be known constants for all systems. H∞ gains are calculated numerically using disturbance signals and performances of observers are compared.

The primary goal of this thesis is to implement the observer for Time Delay Systems designed using SOS and compare its performance with existing H∞ optimal observers. These observers are more general than other observers for time-delay systems as they make corrections to the delayed state as well along with the present state. The observer dynamics can be represented by an ODE coupled with a PDE. Results shown in this thesis show that this type of observers performs better than other H∞ observers. Sub-optimal observer-based state feedback system is also generated and simulated using the SOS observer. The simulation results show that the closed loop system converges very quickly, and the observer can be used to design full state-feedback closed loop system.
ContributorsTalati, Rushabh Vikram (Author) / Peet, Matthew (Thesis advisor) / Berman, Spring (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2018
156760-Thumbnail Image.png
Description
Recently, two-dimensional (2D) materials have emerged as a new class of materials with highly attractive electronic, optical, magnetic, and thermal properties. However, there exists a sub-category of 2D layers wherein constituent metal atoms are arranged in a way that they form weakly coupled chains confined in the 2D landscape. These

Recently, two-dimensional (2D) materials have emerged as a new class of materials with highly attractive electronic, optical, magnetic, and thermal properties. However, there exists a sub-category of 2D layers wherein constituent metal atoms are arranged in a way that they form weakly coupled chains confined in the 2D landscape. These weakly coupled chains extend along particular lattice directions and host highly attractive properties including high thermal conduction pathways, high-mobility carriers, and polarized excitons. In a sense, these materials offer a bridge between traditional one-dimensional (1D) materials (nanowires and nanotubes) and 2D layered systems. Therefore, they are often referred as pseudo-1D materials, and are anticipated to impact photonics and optoelectronics fields.

This dissertation focuses on the novel growth routes and fundamental investigation of the physical properties of pseudo-1D materials. Example systems are based on transition metal chalcogenide such as rhenium disulfide (ReS2), titanium trisulfide (TiS3), tantalum trisulfide (TaS3), and titanium-niobium trisulfide (Nb(1-x)TixS3) ternary alloys. Advanced growth, spectroscopy, and microscopy techniques with density functional theory (DFT) calculations have offered the opportunity to understand the properties of these materials both experimentally and theoretically. The first controllable growth of ReS2 flakes with well-defined domain architectures has been established by a state-of-art chemical vapor deposition (CVD) method. High-resolution electron microscopy has offered the very first investigation into the structural pseudo-1D nature of these materials at an atomic level such as the chain-like features, grain boundaries, and local defects.

Pressure-dependent Raman spectroscopy and DFT calculations have investigated the origin of the Raman vibrational modes in TiS3 and TaS3, and discovered the unusual pressure response and its effect on Raman anisotropy. Interestingly, the structural and vibrational anisotropy can be retained in the Nb(1-x)TixS3 alloy system with the presence of phase transition at a nominal Ti alloying limit. Results have offered valuable experimental and theoretical insights into the growth routes as well as the structural, optical, and vibrational properties of typical pseudo-1D layered systems. The overall findings hope to shield lights to the understanding of this entire class of materials and benefit the design of 2D electronics and optoelectronics.
ContributorsWu, Kedi (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2018
156666-Thumbnail Image.png
Description
Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium

Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium chalcogenides, belonging to the group III-VI compounds, are a new class of 2D semiconductors that carry a variety of interesting properties including wide spectrum coverage of their bandgaps and thus are promising candidates for next generation electronic and optoelectronic devices. Pushing these materials toward applications requires more controllable synthesis methods and facile routes for engineering their properties on demand.

In this dissertation, vapor phase transport is used to synthesize layer structured gallium chalcogenide nanomaterials with highly controlled structure, morphology and properties, with particular emphasis on GaSe, GaTe and GaSeTe alloys. Multiple routes are used to manipulate the physical properties of these materials including strain engineering, defect engineering and phase engineering. First, 2D GaSe with controlled morphologies is synthesized on Si(111) substrates and the bandgap is significantly reduced from 2 eV to 1.7 eV due to lateral tensile strain. By applying vertical compressive strain using a diamond anvil cell, the band gap can be further reduced to 1.4 eV. Next, pseudo-1D GaTe nanomaterials with a monoclinic structure are synthesized on various substrates. The product exhibits highly anisotropic atomic structure and properties characterized by high-resolution transmission electron microscopy and angle resolved Raman and photoluminescence (PL) spectroscopy. Multiple sharp PL emissions below the bandgap are found due to defects localized at the edges and grain boundaries. Finally, layer structured GaSe1-xTex alloys across the full composition range are synthesized on GaAs(111) substrates. Results show that GaAs(111) substrate plays an essential role in stabilizing the metastable single-phase alloys within the miscibility gaps. A hexagonal to monoclinic phase crossover is observed as the Te content increases. The phase crossover features coexistence of both phases and isotropic to anisotropic structural transition.

Overall, this work provides insights into the controlled synthesis of gallium chalcogenides and opens up new opportunities towards optoelectronic applications that require tunable material properties.
ContributorsCai, Hui, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Dwyer, Christian (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
157142-Thumbnail Image.png
Description
Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the ECM fibers via focal adhesion complexes. Such active forces consistently

Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the ECM fibers via focal adhesion complexes. Such active forces consistently remodel the local ECM (e.g., by re-orienting the collagen fibers, forming fiber bundles and increasing the local stiffness of ECM), leading to a dynamically evolving force network in the system that in turn regulates the collective migration of cells.

In this work, this novel mechanotaxis mechanism is investigated, i.e., the role of the ECM mediated active cellular force propagation in coordinating collective cell migration via computational modeling and simulations. The work mainly includes two components: (i) microstructure and micromechanics modeling of cellularized ECM (collagen) networks and (ii) modeling collective cell migration and self-organization in 3D ECM. For ECM modeling, a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization is devised. Analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. For modeling collective migratory behaviors of the cells, a minimal active-particle-on-network (APN) model is developed, in which reveals a dynamic transition in the system as the particle number density ρ increases beyond a critical value ρc, from an absorbing state in which the particles segregate into small isolated stationary clusters, to a dynamic state in which the majority of the particles join in a single large cluster undergone constant dynamic reorganization. The results, which are consistent with independent experimental results, suggest a robust mechanism based on ECM-mediated mechanical coupling for collective cell behaviors in 3D ECM.

For the future plan, further substantiate the minimal cell migration model by incorporating more detailed cell-ECM interactions and relevant sub-cellular mechanisms is needed, as well as further investigation of the effects of fiber alignment, ECM mechanical properties and externally applied mechanical cues on collective migration dynamics.
ContributorsNan, Hanqing (Author) / Jiao, Yang (Thesis advisor) / Alford, Terry (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
157301-Thumbnail Image.png
Description
This investigation focuses on the development of uncertainty modeling methods applicable to both the structural and thermal models of heated structures as part of an effort to enable the design under uncertainty of hypersonic vehicles. The maximum entropy-based nonparametric stochastic modeling approach is used within the context of coupled structural-thermal

This investigation focuses on the development of uncertainty modeling methods applicable to both the structural and thermal models of heated structures as part of an effort to enable the design under uncertainty of hypersonic vehicles. The maximum entropy-based nonparametric stochastic modeling approach is used within the context of coupled structural-thermal Reduced Order Models (ROMs). Not only does this strategy allow for a computationally efficient generation of samples of the structural and thermal responses but the maximum entropy approach allows to introduce both aleatoric and some epistemic uncertainty into the system.

While the nonparametric approach has a long history of applications to structural models, the present investigation was the first one to consider it for the heat conduction problem. In this process, it was recognized that the nonparametric approach had to be modified to maintain the localization of the temperature near the heat source, which was successfully achieved.

The introduction of uncertainty in coupled structural-thermal ROMs of heated structures was addressed next. It was first recognized that the structural stiffness coefficients (linear, quadratic, and cubic) and the parameters quantifying the effects of the temperature distribution on the structural response can be regrouped into a matrix that is symmetric and positive definite. The nonparametric approach was then applied to this matrix allowing the assessment of the effects of uncertainty on the resulting temperature distributions and structural response.

The third part of this document focuses on introducing uncertainty using the Maximum Entropy Method at the level of finite element by randomizing elemental matrices, for instance, elemental stiffness, mass and conductance matrices. This approach brings some epistemic uncertainty not present in the parametric approach (e.g., by randomizing the elasticity tensor) while retaining more local character than the operation in ROM level.

The last part of this document focuses on the development of “reduced ROMs” (RROMs) which are reduced order models with small bases constructed in a data-driven process from a “full” ROM with a much larger basis. The development of the RROM methodology is motivated by the desire to optimally reduce the computational cost especially in multi-physics situations where a lack of prior understanding/knowledge of the solution typically leads to the selection of ROM bases that are excessively broad to ensure the necessary accuracy in representing the response. It is additionally emphasized that the ROM reduction process can be carried out adaptively, i.e., differently over different ranges of loading conditions.
ContributorsSong, Pengchao (Author) / Mignolet, Marc P (Thesis advisor) / Smarslok, Benjamin (Committee member) / Chattopadhyay, Aditi (Committee member) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2019