This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 125
150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
150050-Thumbnail Image.png
Description
The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also

The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-width-modulated (PWM) single phase rectifier. A unified gyrator-based average model is developed for a general multi-active-bridge (MAB) converter controlled through phase-shift modulation (PSM). Expressions to determine the power rating of the MAB ports are also derived. The developed gyrator-based average model is applied to the QAB converter for faster simulations of the proposed SST during the control design process as well for deriving the state-space representation of the plant. Both linear quadratic regulator (LQR) and single-input-single-output (SISO) types of controllers are designed for the DC-DC stage. A novel technique that complements the SISO controller by taking into account the cross-coupling characteristics of the QAB converter is also presented herein. Cascaded SISO controllers are designed for the AC-DC stage. The QAB demanded power is calculated at the QAB controls and then fed into the rectifier controls in order to minimize the effect of the interaction between the two SST stages. The dynamic performance of the designed control loops based on the proposed control strategies are verified through extensive simulation of the SST average and switching models. The experimental results presented herein show that the transient responses for each control strategy match those from the simulations results thus validating them.
ContributorsFalcones, Sixifo Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
Description
The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them

The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them separately in a music studio, then mixed them together into one recording. This document focuses on the critical investigation and description of the piece with a brief theoretical analysis, a discussion of performance difficulties, and guitar preparation. The composer approved the use and the scope of this project. Bryan Johanson is one of the leading contemporary composers for the guitar today. 13 Ways of Looking at 12 Strings is a unique guitar dictionary that takes us from Bach to Hendrix and highlights the unique capabilities of the instrument. It utilizes encoded messages, glass slides, metal mutes, explosive "riffs," rhythmic propulsion, improvisation, percussion, fugual writing, and much more. It has a great potential to make the classical guitar attractive to wider audiences, not limited only to guitarists and musicians. The main resources employed in researching this document are existing recordings of Johanson's other compositions and documentation of his personal views and ideas. This written document uses the composer's prolific and eclectic compositional output in order to draw conclusions and trace motifs. This project is a significant and original contribution in expanding the guitar's repertoire, and it uniquely contributes to bringing forth a significant piece of music.
ContributorsSavic, Nenad (Author) / Koonce, Frank (Thesis advisor) / Rotaru, Catalin (Committee member) / McLin, Katherine (Committee member) / Feisst, Sabine (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2011
149724-Thumbnail Image.png
Description
This composition was commissioned by the Orgelpark to be performed in Amsterdam in September 2011 during Gaudeamus Muziekweek. It will be performed by the vocal group VocaalLab Nederland. It is scored for four vocalists, organ, tanpura, and electronic sound. The work is a culmination of my studies in South Indian

This composition was commissioned by the Orgelpark to be performed in Amsterdam in September 2011 during Gaudeamus Muziekweek. It will be performed by the vocal group VocaalLab Nederland. It is scored for four vocalists, organ, tanpura, and electronic sound. The work is a culmination of my studies in South Indian Carnatic rhythm, North Indian classical singing, and American minimalism. It is a meditation on the idea that the drone and pulse are micro/macro aspects of the same phenomenon of vibration. Cycles are created on the macroscale through a mathematically defined scale of harmonic/pitch relationships. Cycles are created on the microscale through the subdivision and addition of rhythmic pulses.
ContributorsAdler, Jacob (Composer) / Rockmaker, Jody (Thesis advisor) / Feisst, Sabine (Committee member) / Etezady, Roshanne, 1973- (Committee member) / Arizona State University (Publisher)
Created2011
149858-Thumbnail Image.png
Description
This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large,

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.
ContributorsZhou, Zhibin (Author) / Huang, Dijiang (Thesis advisor) / Yau, Sik-Sang (Committee member) / Ahn, Gail-Joon (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2011
150093-Thumbnail Image.png
Description
Action language C+ is a formalism for describing properties of actions, which is based on nonmonotonic causal logic. The definite fragment of C+ is implemented in the Causal Calculator (CCalc), which is based on the reduction of nonmonotonic causal logic to propositional logic. This thesis describes the language

Action language C+ is a formalism for describing properties of actions, which is based on nonmonotonic causal logic. The definite fragment of C+ is implemented in the Causal Calculator (CCalc), which is based on the reduction of nonmonotonic causal logic to propositional logic. This thesis describes the language of CCalc in terms of answer set programming (ASP), based on the translation of nonmonotonic causal logic to formulas under the stable model semantics. I designed a standard library which describes the constructs of the input language of CCalc in terms of ASP, allowing a simple modular method to represent CCalc input programs in the language of ASP. Using the combination of system F2LP and answer set solvers, this method achieves functionality close to that of CCalc while taking advantage of answer set solvers to yield efficient computation that is orders of magnitude faster than CCalc for many benchmark examples. In support of this, I created an automated translation system Cplus2ASP that implements the translation and encoding method and automatically invokes the necessary software to solve the translated input programs.
ContributorsCasolary, Michael (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2011
151795-Thumbnail Image.png
Description
Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to

Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to letting sound evolve freely, different movements revolve around different sounds and sound producing techniques.
ContributorsDori, Gil (Contributor) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013
151763-Thumbnail Image.png
Description
This thesis presents an overview of the calculation and application of locational marginal prices in electric power systems particularly pertaining to the distribution system. The terminology proposed is a distribution locational marginal price or DLMP. The calculation of locational process in distribution engineering is conjectured and discussed. The use of

This thesis presents an overview of the calculation and application of locational marginal prices in electric power systems particularly pertaining to the distribution system. The terminology proposed is a distribution locational marginal price or DLMP. The calculation of locational process in distribution engineering is conjectured and discussed. The use of quadratic programming for this calculation is proposed and illustrated. A small four bus test bed exemplifies the concept and then the concept is expanded to the IEEE 34 bus distribution system. Alternatives for the calculation are presented, and approximations are reviewed. Active power losses in the system are modeled and incorporated by two different methods. These calculation methods are also applied to the 34 bus system. The results from each method are compared to results found using the PowerWorld simulator. The application of energy management using the DLMP to control load is analyzed as well. This analysis entails the use of the DLMP to cause certain controllable loads to decrease when the DLMP is high, and vice-versa. Tests are done to illustrate the impact of energy management using DLMPs for residential, commercial, and industrial controllable loads. Results showing the dynamics of the loads are shown. The use and characteristics of Matlab function FMINCON are presented in an appendix.
ContributorsSteffan, Nick (Author) / Heydt, Gerald T (Thesis advisor) / Hedman, Kory (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
151778-Thumbnail Image.png
Description
This project features three new pieces for clarinet commissioned from three different composers. Two are for unaccompanied clarinet and one is for clarinet, bass clarinet, and laptop. These pieces are Storm's a Comin' by Chris Burton, Light and Shadows by Theresa Martin, and My Own Agenda by Robbie McCarthy. These

This project features three new pieces for clarinet commissioned from three different composers. Two are for unaccompanied clarinet and one is for clarinet, bass clarinet, and laptop. These pieces are Storm's a Comin' by Chris Burton, Light and Shadows by Theresa Martin, and My Own Agenda by Robbie McCarthy. These three solos challenge the performer in various ways including complex rhythm, use of extended techniques such as growling, glissando, and multiphonics, and the incorporation of technology into a live performance. In addition to background information, a performance practice guide has also been included for each of the pieces. This guide provides recommendations and suggestions for future performers wishing to study and perform these works. Also included are transcripts of interviews done with each of the composers as well as full scores for each of the pieces. Accompanying this document are recordings of each of the three pieces, performed by the author.
ContributorsVaughan, Melissa Lynn (Author) / Spring, Robert (Thesis advisor) / Micklich, Albie (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013