This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 9 of 9
Filtering by

Clear all filters

141428-Thumbnail Image.png
Description

This study assessed the spatial distribution of vulnerability to extreme heat in 1990 and 2000 within metropolitan Phoenix based on an index of seven equally weighted measures of physical exposure and adaptive capacity. These measures were derived from spatially interpolated climate, normalized differential vegetation index, and U.S. Census data. From

This study assessed the spatial distribution of vulnerability to extreme heat in 1990 and 2000 within metropolitan Phoenix based on an index of seven equally weighted measures of physical exposure and adaptive capacity. These measures were derived from spatially interpolated climate, normalized differential vegetation index, and U.S. Census data. From resulting vulnerability maps, we also analyzed population groups living in areas of high heat vulnerability. Results revealed that landscapes of heat vulnerability changed substantially in response to variations in physical and socioeconomic factors, with significant alterations to spatial distribution of vulnerability especially between eastern and western sectors of Phoenix. These changes worked to the detriment of Phoenix's Hispanic population and the elderly concentrated in urban-fringe retirement communities.

ContributorsChow, Winston, 1951- (Author) / Chuang, Wen-Ching (Author) / Gober, Patricia (Author)
Created2011-08-18
141435-Thumbnail Image.png
Description

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona's Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C).

Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for hydrologic impacts in addition to continued focus on mean temperature effects.

ContributorsGeorgescu, Matei (Author) / Mahalov, A. (Author) / Moustaoui, M. (Author)
Created2012-09-07
141436-Thumbnail Image.png
Description

This research evaluates the climatic summertime representation of the diurnal cycle of near-surface temperature using the Weather Research and Forecasting System (WRF) over the rapidly urbanizing and water-vulnerable Phoenix metropolitan area. A suite of monthly, high-resolution (2 km grid spacing) simulations are conducted during the month of July with both

This research evaluates the climatic summertime representation of the diurnal cycle of near-surface temperature using the Weather Research and Forecasting System (WRF) over the rapidly urbanizing and water-vulnerable Phoenix metropolitan area. A suite of monthly, high-resolution (2 km grid spacing) simulations are conducted during the month of July with both a contemporary landscape and a hypothetical presettlement scenario. WRF demonstrates excellent agreement in the representation of the daily to monthly diurnal cycle of near-surface temperatures, including the accurate simulation of maximum daytime temperature timing. Thermal sensitivity to anthropogenic land use and land cover change (LULCC), assessed via replacement of the modern-day landscape with natural shrubland, is small on the regional scale. The WRF-simulated characterization of the diurnal cycle, supported by previous observational analyses, illustrates two distinct and opposing impacts on the urbanized diurnal cycle of the Phoenix metro area, with evening and nighttime warming partially offset by daytime cooling. The simulated nighttime urban heat island (UHI) over this semiarid urban complex is explained by well-known mechanisms (slow release of heat from within the urban fabric stored during daytime and increased emission of longwave radiation from the urban canopy toward the surface). During daylight hours, the limited vegetation and dry semidesert region surrounding metro Phoenix warms at greater rates than the urban complex. Although prior work has suggested that daytime temperatures are lower within the urban complex owing to the addition of residential and agricultural irrigation (i.e., “oasis effect”) we show that modification of Phoenix's surrounding environment to a biome more representative of temperate regions eliminates the daytime urban cooling. Our results indicate that surrounding environmental conditions, including land cover and availability of soil moisture, play a principal role in establishing the nature and evolution of the diurnal cycle of near-surface temperature for the greater Phoenix, Arizona, metropolitan area relative to its rural and undeveloped counterpart.

ContributorsGeorgescu, Matei (Author) / Moustaoui, M. (Author) / Mahalov, A. (Author) / Dudhia, J. (Author)
Created2011-12-11
141437-Thumbnail Image.png
Description

Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over

Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ~53% of diurnally averaged total electric demand, ranging from ~35% during early morning to ~65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

ContributorsSalamanca, F. (Author) / Georgescu, Matei (Author) / Mahalov, A. (Author) / Moustaoui, M. (Author) / Wang, M. (Author) / Svoma, B. M. (Author)
Created2013-08-29
141444-Thumbnail Image.png
Description

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a 10-variable indicator framework, using data on heat-related hospitalizations in Phoenix, Arizona. We also identified potential local risk factors not included in the generic indicators.

Methods: To evaluate the accuracy of the generic index in a city-specific context, we used factor scores, derived from a factor analysis using census tract–level characteristics, as independent variables, and heat hospitalizations (with census tracts categorized as zero-, moderate-, or highincidence) as dependent variables in a multinomial logistic regression model. We also compared the geographical differences between a vulnerability map derived from the generic index and one derived from actual heat-related hospitalizations at the census-tract scale.

Results: We found that the national-indicator framework correctly classified just over half (54%) of census tracts in Phoenix. Compared with all census tracts, high-vulnerability tracts that were misclassified by the index as zero-vulnerability tracts had higher average income and higher proportions of residents with a duration of residency < 5 years.

Conclusion: The generic indicators of vulnerability are useful, but they are sensitive to scale, measurement, and context. Decision makers need to consider the characteristics of their cities to determine how closely vulnerability maps based on generic indicators reflect actual risk of harm.

ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Author)
Created2015-06-01
141446-Thumbnail Image.png
Description

We investigated the spatial and temporal variation in June mean minimum temperatures for weather stations in and around metropolitan Phoenix, USA, for the period 1990 to 2004. Temperature was related to synoptic conditions, location in urban development zones (DZs), and the pace of housing construction in a 1 km buffer

We investigated the spatial and temporal variation in June mean minimum temperatures for weather stations in and around metropolitan Phoenix, USA, for the period 1990 to 2004. Temperature was related to synoptic conditions, location in urban development zones (DZs), and the pace of housing construction in a 1 km buffer around fixed-point temperature stations. June is typically clear and calm, and dominated by a dry, tropical air mass with little change in minimum temperature from day to day. However, a dry, moderate weather type accounted for a large portion of the inter-annual variability in mean monthly minimum temperature. Significant temperature variation was explained by surface effects captured by the type of urban DZ, which ranged from urban core and infill sites, to desert and agricultural fringe locations, to exurban. An overall spatial urban effect, derived from the June monthly mean minimum temperature, is in the order of 2 to 4 K. The cumulative housing build-up around weather sites in the region was significant and resulted in average increases of 1.4 K per 1000 home completions, with a standard error of 0.4 K. Overall, minimum temperatures were spatially and temporally accounted for by variations in weather type, type of urban DZ (higher in core and infill), and the number of home completions over the period. Results compare favorably with the magnitude of heating by residential development cited by researchers using differing methodologies in other urban areas.

ContributorsBrazel, Anthony J. (Author) / Gober, Patricia (Author) / Lee, Seung-Jae (Author) / Grossman-Clarke, Susanne (Author) / Zehnder, Joseph (Author) / Hedquist, Brent (Author) / Comparri, Erin (Author)
Created2007-02-22
141390-Thumbnail Image.png
Description

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model applied to spatially disaggregated data from Phoenix, Arizona. The empirical evidence from the observations in Phoenix suggests the following: (1) impervious surfaces contribute to increased residential water use by exacerbating UHI; (2) larger lots containing pools and mesic vegetation increase water demand by reducing diurnal temperature difference; and (3) smart design of urban environments needs to go beyond simplistic water body- and vegetation-based solutions for mitigating uncomfortably high temperatures and consider interactions between surface materials, land use, UHI, and water use.

ContributorsGuhathakurta, Subhrajit (Author) / Gober, Patricia (Author)
Created2010-07-08
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16