This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 8 of 8
Filtering by

Clear all filters

141426-Thumbnail Image.png
Description

Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs

Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area.

Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment – anthropogenic heating – is an essential element toward continued progress in urban climate assessment.

ContributorsSailor, David (Author) / Georgescu, Matei (Author) / Milne, Jeffrey M. (Author) / Hart, Melissa A. (Author)
Created2015-07-17
141428-Thumbnail Image.png
Description

This study assessed the spatial distribution of vulnerability to extreme heat in 1990 and 2000 within metropolitan Phoenix based on an index of seven equally weighted measures of physical exposure and adaptive capacity. These measures were derived from spatially interpolated climate, normalized differential vegetation index, and U.S. Census data. From

This study assessed the spatial distribution of vulnerability to extreme heat in 1990 and 2000 within metropolitan Phoenix based on an index of seven equally weighted measures of physical exposure and adaptive capacity. These measures were derived from spatially interpolated climate, normalized differential vegetation index, and U.S. Census data. From resulting vulnerability maps, we also analyzed population groups living in areas of high heat vulnerability. Results revealed that landscapes of heat vulnerability changed substantially in response to variations in physical and socioeconomic factors, with significant alterations to spatial distribution of vulnerability especially between eastern and western sectors of Phoenix. These changes worked to the detriment of Phoenix's Hispanic population and the elderly concentrated in urban-fringe retirement communities.

ContributorsChow, Winston, 1951- (Author) / Chuang, Wen-Ching (Author) / Gober, Patricia (Author)
Created2011-08-18
141444-Thumbnail Image.png
Description

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a 10-variable indicator framework, using data on heat-related hospitalizations in Phoenix, Arizona. We also identified potential local risk factors not included in the generic indicators.

Methods: To evaluate the accuracy of the generic index in a city-specific context, we used factor scores, derived from a factor analysis using census tract–level characteristics, as independent variables, and heat hospitalizations (with census tracts categorized as zero-, moderate-, or highincidence) as dependent variables in a multinomial logistic regression model. We also compared the geographical differences between a vulnerability map derived from the generic index and one derived from actual heat-related hospitalizations at the census-tract scale.

Results: We found that the national-indicator framework correctly classified just over half (54%) of census tracts in Phoenix. Compared with all census tracts, high-vulnerability tracts that were misclassified by the index as zero-vulnerability tracts had higher average income and higher proportions of residents with a duration of residency < 5 years.

Conclusion: The generic indicators of vulnerability are useful, but they are sensitive to scale, measurement, and context. Decision makers need to consider the characteristics of their cities to determine how closely vulnerability maps based on generic indicators reflect actual risk of harm.

ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Author)
Created2015-06-01
141446-Thumbnail Image.png
Description

We investigated the spatial and temporal variation in June mean minimum temperatures for weather stations in and around metropolitan Phoenix, USA, for the period 1990 to 2004. Temperature was related to synoptic conditions, location in urban development zones (DZs), and the pace of housing construction in a 1 km buffer

We investigated the spatial and temporal variation in June mean minimum temperatures for weather stations in and around metropolitan Phoenix, USA, for the period 1990 to 2004. Temperature was related to synoptic conditions, location in urban development zones (DZs), and the pace of housing construction in a 1 km buffer around fixed-point temperature stations. June is typically clear and calm, and dominated by a dry, tropical air mass with little change in minimum temperature from day to day. However, a dry, moderate weather type accounted for a large portion of the inter-annual variability in mean monthly minimum temperature. Significant temperature variation was explained by surface effects captured by the type of urban DZ, which ranged from urban core and infill sites, to desert and agricultural fringe locations, to exurban. An overall spatial urban effect, derived from the June monthly mean minimum temperature, is in the order of 2 to 4 K. The cumulative housing build-up around weather sites in the region was significant and resulted in average increases of 1.4 K per 1000 home completions, with a standard error of 0.4 K. Overall, minimum temperatures were spatially and temporally accounted for by variations in weather type, type of urban DZ (higher in core and infill), and the number of home completions over the period. Results compare favorably with the magnitude of heating by residential development cited by researchers using differing methodologies in other urban areas.

ContributorsBrazel, Anthony J. (Author) / Gober, Patricia (Author) / Lee, Seung-Jae (Author) / Grossman-Clarke, Susanne (Author) / Zehnder, Joseph (Author) / Hedquist, Brent (Author) / Comparri, Erin (Author)
Created2007-02-22
141386-Thumbnail Image.png
Description

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying causes of spatial variability in the urban heat island has been developed. This paper presents the method as applied to a specific test case of Portland, Oregon. Vehicle temperature traverses were used to determine spatial differences in summertime ~2 m air temperature across the metropolitan area in the afternoon. A tree-structured regression model was used to quantify the land-use and surface characteristics that have the greatest influence on daytime UHI intensity. The most important urban characteristic separating warmer from cooler regions of the Portland metropolitan area was canopy cover. Roadway area density was also an important determinant of local UHI magnitudes. Specifically, the air above major arterial roads was found to be warmer on weekdays than weekends, possibly due to increased anthropogenic activity from the vehicle sector on weekdays. In general, warmer regions of the city were associated with industrial and commercial land-use. The downtown core, whilst warmer than the rural surroundings, was not the warmest part of the Portland metropolitan area. This is thought to be due in large part to local shading effects in the urban canyons.

ContributorsHart, Melissa A. (Author) / Sailor, David (Author)
Created2008-05-07
141390-Thumbnail Image.png
Description

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model applied to spatially disaggregated data from Phoenix, Arizona. The empirical evidence from the observations in Phoenix suggests the following: (1) impervious surfaces contribute to increased residential water use by exacerbating UHI; (2) larger lots containing pools and mesic vegetation increase water demand by reducing diurnal temperature difference; and (3) smart design of urban environments needs to go beyond simplistic water body- and vegetation-based solutions for mitigating uncomfortably high temperatures and consider interactions between surface materials, land use, UHI, and water use.

ContributorsGuhathakurta, Subhrajit (Author) / Gober, Patricia (Author)
Created2010-07-08
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16