This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

141374-Thumbnail Image.png
Description

Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate.

Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate. The agricultural sector in both developing and developed areas needs to understand what is at stake and to prepare for the potential for change wisely.

Despite tremendous improvements in technology and crop yield potential, food production remains highly dependent on climate, because solar radiation, temperature, and precipitation are the main drivers of crop growth. Plant diseases and pest infestations, as well as the supply of and demand for irrigation water are influenced by climate. For example, in recent decades, the persistent drought in the Sahelian region of Africa has caused continuing deterioration of food production[1,2]; the 1988 Mid-west drought led to a 30% reduction in U.S. corn production and cost taxpayers $3 billion in direct relief payments to farmers[3] and, weather anomalies associated with the 1997-98 El Niño affected agriculture adversely in Nordeste, Brazil and Indonesia[4]. Earlier in the century, the 1930s U.S. Southern Great Plains drought caused some 200,000 farm bankruptcies in the Dust Bowl; yields of wheat and corn were reduced by as much as 50%[5].

The aim of this article is to discuss the effects of climate variability and change on food production, risk of malnutrition, and incidence of weeds, insects, and diseases. It focuses on the effects of extreme weather events on agriculture, looking at examples from the recent past and to future projections. Major incidents of climate variability are contrasted, including the effects of the El Niño-Southern Oscillation. Finally, projected scenarios of future climate change impacts on crop production and risk of hunger in major agricultural regions are presented.

Altered weather patterns can increase crop vulnerability to infection, pest infestations, and choking weeds. Ranges of crop weeds, insects, and diseases are projected to expand to higher latitudes[6,7]. Shifts in climate in different world regions may have different and contrasting effects. Some parts of the world may benefit from global climate change (at least in the short term), but large regions of the developing world may experience reduced food supplies and potential increase in malnutrition[2,3]. Changes in food supply could lead to permanent or semi-permanent displacement of populations in developing countries, consequent overcrowding and associated diseases, such as tuberculosis[8].

ContributorsRosenzweig, Cynthia (Author) / Iglesias, Ana (Author) / Yang, X.B. (Author) / Epstein, Paul R. (Author) / Chivian, Eric (Author)
Created2001-12
Description
In Greater Phoenix, urban heat is impacting health, safety, and the economy and these impacts are expected to worsen over time. The number of days above 110˚F are projected to more than double by 2060. In May 2017, The Nature Conservancy, Maricopa County Department of Public Health, Central Arizona Conservation

In Greater Phoenix, urban heat is impacting health, safety, and the economy and these impacts are expected to worsen over time. The number of days above 110˚F are projected to more than double by 2060. In May 2017, The Nature Conservancy, Maricopa County Department of Public Health, Central Arizona Conservation Alliance, Urban Resilience to Extremes Sustainability Research Network, Arizona State University’s Urban Climate Research Center, and Center for Whole Communities launched a participatory Heat Action Planning process to identify both mitigation and adaptation strategies to reduce heat directly and improve the ability of residents to deal with heat. Community-based organizations with existing relationships in three neighborhoods selected for Heat Action Planning later joined the project team: Phoenix Revitalization Corporation, RAILMesa, and Puente Movement. Beyond building a community Heat Action Plan and completing demonstration projects, this participatory process was designed to develop awareness, agency, and social cohesion in underrepresented communities. Furthermore, the Heat Action Planning process was designed to serve as a model for future heat resilience efforts and create a local, contextual, and culturally appropriate vision of a safer, healthier future. The iterative planning and engagement method used by the project team strengthened relationships within and between neighborhoods, community-based organizations, decision-makers, and the core team, and it combined storytelling wisdom and scientific evidence to better understand current and future challenges residents face during extreme heat events.
As a result of three workshops within each community, the residents brought forth ideas that they want to see implemented to increase their thermal comfort and safety during extreme heat days. As depicted below, residents’ ideas intersected around similar concepts, but specific solutions varied across neighborhoods. For example, all neighborhoods would like to add shade to their pedestrian corridors but preferences for the location of shade improvements differed. Some neighborhoods prioritized routes to public transportation, others prioritized routes used by children on their way to school, and others wanted to see shaded rest stops in key places. Four overarching strategic themes emerged across all three neighborhoods: advocate and educate; improve comfort/ability to cope; improve safety; build capacity. These themes signal that there are serious heat safety challenges in residents’ day-to-day lives and that community, business, and decision-making sectors need to address those challenges.
Heat Action Plan elements are designed to be incorporated into other efforts to alleviate heat, to create climate-resilient cities, and to provide public health and safety. Heat Action Plan implementation partners are identified drawing from the Greater Phoenix region, and recommendations are given for supporting the transformation to a cooler city.
To scale this approach, project team members recommend a) continued engagement with and investments into these neighborhoods to implement change signaled by residents as vital, b) repeating the heat action planning process with community leaders in other neighborhoods, and c) working with cities, urban planners, and other stakeholders to institutionalize this process, supporting policies, and the use of proposed metrics for creating cooler communities.
ContributorsNature Conservancy (U.S.) (Contributor)
Created2019