This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

141432-Thumbnail Image.png
Description

This study examines the impact of spatial landscape configuration (e.g., clustered, dispersed) on land-surface temperatures (LST) over Phoenix, Arizona, and Las Vegas, Nevada, USA. We classified detailed land-cover types via object-based image analysis (OBIA) using Geoeye-1 at 3-m resolution (Las Vegas) and QuickBird at 2.4-m resolution (Phoenix). Spatial autocorrelation (local

This study examines the impact of spatial landscape configuration (e.g., clustered, dispersed) on land-surface temperatures (LST) over Phoenix, Arizona, and Las Vegas, Nevada, USA. We classified detailed land-cover types via object-based image analysis (OBIA) using Geoeye-1 at 3-m resolution (Las Vegas) and QuickBird at 2.4-m resolution (Phoenix). Spatial autocorrelation (local Moran’s I ) was then used to test for spatial dependence and to determine how clustered or dispersed points were arranged. Next, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on 10 June and nighttime on 17 October 2011) and Las Vegas (daytime on 6 July and nighttime on 27 August 2005) to examine day- and nighttime LST with regard to the spatial arrangement of anthropogenic and vegetation features. Local Moran’s I values of each land-cover type were spatially correlated to surface temperature. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, clustered spatial arrangements of anthropogenic land-cover types, especially impervious surfaces and open soil, elevate LST. These findings suggest that city planners and managers should, where possible, incorporate clustered grass and trees to disperse unmanaged soil and paved surfaces, and fill open unmanaged soil with vegetation. Our findings are in line with national efforts to augment and strengthen green infrastructure, complete streets, parking management, and transit-oriented development practices, and reduce sprawling, unwalkable housing development.

ContributorsMyint, Soe Win (Author) / Zheng, Baojuan (Author) / Talen, Emily (Author) / Fan, Chao (Author) / Kaplan, Shari (Author) / Middel, Ariane (Author) / Smith, Martin (Author) / Huang, Huei-Ping (Author) / Brazel, Anthony J. (Author)
Created2015-06-29
141409-Thumbnail Image.png
Description

Mortality from environmental heat is a significant public health problem in Maricopa County, especially because it is largely preventable. Maricopa County has conducted heat surveillance since 2006. Each year, the enhanced heat surveillance season usually begins in May and ends in October. The main goals of heat surveillance are to

Mortality from environmental heat is a significant public health problem in Maricopa County, especially because it is largely preventable. Maricopa County has conducted heat surveillance since 2006. Each year, the enhanced heat surveillance season usually begins in May and ends in October. The main goals of heat surveillance are to identify the demographic characteristics of heat-associated deaths (e.g., age and gender) and the risk factors for mortality (e.g., homelessness). Sharing this information helps community stakeholders to design interventions in an effort to prevent heat-associated deaths among vulnerable populations.

The two main sources of data for heat surveillance are: preliminary reports of death (PRODs) from the Office of the Medical Examiner (OME) and death certificates from the MCDPH Office of Vital Registration.

Heat-associated deaths are classified as heat-caused or heat related. Heat-caused deaths are those in which environmental heat was directly involved in the sequence of conditions causing deaths. Heat-related deaths are those in which environmental heat contributed to the deaths but was not in the sequence of conditions causing these deaths. For more information on how heat-associated deaths are classified, see the definitions in Appendix. For more information on MCDPH’s surveillance system, see Background and Methodology.

Created2015