This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

141384-Thumbnail Image.png
Description

There has been a wide range of low-carbon solutions proposed to mitigate climate change. However, such measures must be compatible with the local environment and living standards of residents to be brought to fruition. Measures that adversely affect residential environments will be difficult to implement, so the impacts of measures

There has been a wide range of low-carbon solutions proposed to mitigate climate change. However, such measures must be compatible with the local environment and living standards of residents to be brought to fruition. Measures that adversely affect residential environments will be difficult to implement, so the impacts of measures on the local environment must be taken into consideration during implementation. This study assessed the effects on urban heat islands of efforts to reduce CO2 emissions, as one environmental impact associated with climate change. A simulated assessment was conducted, using an urban canopy model coupled with a building energy model (CM-BEM), to evaluate the effects of five specific measures: solar shading of windows using curtains and blinds, improvement of the thermal insulation of building walls and roof surfaces, implementation of energy-saving measures related to indoor appliances, installation of solar photovoltaic (PV) panels, and adjustment of preset cooling temperatures. The study focused on these effects as they occur within typical urban districts of office buildings, fire-resistant housing, and wooden housing. Results indicated that many of the energy-saving measures have slight temperature lowering effects, but solar panel installation and improved heat insulation, both associated with changes in surface heat balances, tend to raise daytime temperatures to some extent. However, effects on daytime temperatures were in the range of 0.1–0.2 °C and, as such, none of the CO2 reduction measures considered was deemed a significant factor in raising urban temperatures.

ContributorsHirano, Yujiro (Author) / Yoshida, Yukiko (Author)
Created2016-04-27
141403-Thumbnail Image.png
Description

Cities are systems that include natural and human-created components. When a city grows without proper planning, it tends to have low environmental quality. If improving environmental quality is intended, people’s opinion should be taken into account for a better acceptance of urban management decisions. In this study, we assessed people’s

Cities are systems that include natural and human-created components. When a city grows without proper planning, it tends to have low environmental quality. If improving environmental quality is intended, people’s opinion should be taken into account for a better acceptance of urban management decisions. In this study, we assessed people’s perception of trees by conducting a survey with a controlled sample of citizens from the city of Morelia (west-central Mexico). Citizens liked both native and exotic tree species and rejected mainly exotic ones. Preference for trees were related to tree attributes; such as size. Trees that dropped leaves or tended to fall were not liked. The most-mentioned tree-related benefits were oxygen supply and shade; the most mentioned tree-related damages were accidents and infrastructure damage. The majority of respondents preferred trees near houses to increase tree density. Also, most respondents preferred trees in green areas as well as close to their houses, as they consider that trees provide oxygen. The majority of the respondents thought more trees were needed in the city. In general, our results show that although people perceive that trees in urban areas can cause damages, they often show more interest for the benefits related to trees and consider there should be more trees in cities. We strongly suggest the development of studies that broaden our knowledge of citizen preferences in relation to urban vegetation, and that further policy making takes their perception into account when considering creating new urban green areas, regardless of their type or size.

ContributorsCamacho-Cervantes, Morelia (Author) / Schondube, Jorge E. (Author) / Castillo, Alicia (Author) / MacGregor-Fors, Ian (Author)
Created2014-01-23