This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

141432-Thumbnail Image.png
Description

This study examines the impact of spatial landscape configuration (e.g., clustered, dispersed) on land-surface temperatures (LST) over Phoenix, Arizona, and Las Vegas, Nevada, USA. We classified detailed land-cover types via object-based image analysis (OBIA) using Geoeye-1 at 3-m resolution (Las Vegas) and QuickBird at 2.4-m resolution (Phoenix). Spatial autocorrelation (local

This study examines the impact of spatial landscape configuration (e.g., clustered, dispersed) on land-surface temperatures (LST) over Phoenix, Arizona, and Las Vegas, Nevada, USA. We classified detailed land-cover types via object-based image analysis (OBIA) using Geoeye-1 at 3-m resolution (Las Vegas) and QuickBird at 2.4-m resolution (Phoenix). Spatial autocorrelation (local Moran’s I ) was then used to test for spatial dependence and to determine how clustered or dispersed points were arranged. Next, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on 10 June and nighttime on 17 October 2011) and Las Vegas (daytime on 6 July and nighttime on 27 August 2005) to examine day- and nighttime LST with regard to the spatial arrangement of anthropogenic and vegetation features. Local Moran’s I values of each land-cover type were spatially correlated to surface temperature. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, clustered spatial arrangements of anthropogenic land-cover types, especially impervious surfaces and open soil, elevate LST. These findings suggest that city planners and managers should, where possible, incorporate clustered grass and trees to disperse unmanaged soil and paved surfaces, and fill open unmanaged soil with vegetation. Our findings are in line with national efforts to augment and strengthen green infrastructure, complete streets, parking management, and transit-oriented development practices, and reduce sprawling, unwalkable housing development.

ContributorsMyint, Soe Win (Author) / Zheng, Baojuan (Author) / Talen, Emily (Author) / Fan, Chao (Author) / Kaplan, Shari (Author) / Middel, Ariane (Author) / Smith, Martin (Author) / Huang, Huei-Ping (Author) / Brazel, Anthony J. (Author)
Created2015-06-29
141386-Thumbnail Image.png
Description

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying causes of spatial variability in the urban heat island has been developed. This paper presents the method as applied to a specific test case of Portland, Oregon. Vehicle temperature traverses were used to determine spatial differences in summertime ~2 m air temperature across the metropolitan area in the afternoon. A tree-structured regression model was used to quantify the land-use and surface characteristics that have the greatest influence on daytime UHI intensity. The most important urban characteristic separating warmer from cooler regions of the Portland metropolitan area was canopy cover. Roadway area density was also an important determinant of local UHI magnitudes. Specifically, the air above major arterial roads was found to be warmer on weekdays than weekends, possibly due to increased anthropogenic activity from the vehicle sector on weekdays. In general, warmer regions of the city were associated with industrial and commercial land-use. The downtown core, whilst warmer than the rural surroundings, was not the warmest part of the Portland metropolitan area. This is thought to be due in large part to local shading effects in the urban canyons.

ContributorsHart, Melissa A. (Author) / Sailor, David (Author)
Created2008-05-07