This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

141399-Thumbnail Image.png
Description

Urban ecosystems are subjected to high temperatures—extreme heat events, chronically hot weather, or both—through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better

Urban ecosystems are subjected to high temperatures—extreme heat events, chronically hot weather, or both—through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970–2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade‐offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25°C surface cooling compared to bare soil on low‐humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits.

To estimate the water loss associated with land‐surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation–income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.

ContributorsJenerette, G. Darrel (Author) / Harlan, Sharon L. (Author) / Stefanov, William L. (Author) / Martin, Chris A. (Author)
Created2011-10-01
141403-Thumbnail Image.png
Description

Cities are systems that include natural and human-created components. When a city grows without proper planning, it tends to have low environmental quality. If improving environmental quality is intended, people’s opinion should be taken into account for a better acceptance of urban management decisions. In this study, we assessed people’s

Cities are systems that include natural and human-created components. When a city grows without proper planning, it tends to have low environmental quality. If improving environmental quality is intended, people’s opinion should be taken into account for a better acceptance of urban management decisions. In this study, we assessed people’s perception of trees by conducting a survey with a controlled sample of citizens from the city of Morelia (west-central Mexico). Citizens liked both native and exotic tree species and rejected mainly exotic ones. Preference for trees were related to tree attributes; such as size. Trees that dropped leaves or tended to fall were not liked. The most-mentioned tree-related benefits were oxygen supply and shade; the most mentioned tree-related damages were accidents and infrastructure damage. The majority of respondents preferred trees near houses to increase tree density. Also, most respondents preferred trees in green areas as well as close to their houses, as they consider that trees provide oxygen. The majority of the respondents thought more trees were needed in the city. In general, our results show that although people perceive that trees in urban areas can cause damages, they often show more interest for the benefits related to trees and consider there should be more trees in cities. We strongly suggest the development of studies that broaden our knowledge of citizen preferences in relation to urban vegetation, and that further policy making takes their perception into account when considering creating new urban green areas, regardless of their type or size.

ContributorsCamacho-Cervantes, Morelia (Author) / Schondube, Jorge E. (Author) / Castillo, Alicia (Author) / MacGregor-Fors, Ian (Author)
Created2014-01-23
141418-Thumbnail Image.png
Description

Presentation by David Sailor, professor in the School of Geographical Sciences and Urban Planning and director of the Urban Climate Research Center at ASU. Sailer's presentation addresses how to define urban heat islands (UHI), and decisions about why and how to measure these complex ecosystems.

ContributorsSailor, David (Author)
Created2017-09-07