This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 8 of 8
Filtering by

Clear all filters

141440-Thumbnail Image.png
Description

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the wall temperature and building energy consumption. At a regional scale, various pavement types were also found to have a limited cooling effect on land surface temperature and 2-m air temperature for metropolitan Phoenix. In the context of global climate change, the effect of pavement was evaluated in terms of the equivalent CO2 emission. Equivalent CO2 emission offset by reflective pavements in urban canyons was only about 13.9e46.6% of that without building canopies, depending on the canyon geometry. This study revealed the importance of building-environment thermal interactions in determining thermal conditions inside the urban canopy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Dylla, Heather (Author)
Created2016-08-22
141375-Thumbnail Image.png
Description

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic heat sources are the main causes of UHI. The two heat sources increase the temperatures of an urban area as compared to its surroundings, which is known as Urban Heat Island Intensity (UHII). The problem is even worse in cities or metropolises with large population and extensive economic activities. The estimated three billion people living in the urban areas in the world are directly exposed to the problem, which will be increased significantly in the near future. Due to the severity of the problem, vast research effort has been dedicated and a wide range of literature is available for the subject. The literature available in this area includes the latest research approaches, concepts, methodologies, latest investigation tools and mitigation measures. This study was carried out to review and summarize this research area through an investigation of the most important feature of UHI. It was concluded that the heat re-radiated by the urban structures plays the most important role which should be investigated in details to study urban heating especially the UHI. It was also concluded that the future research should be focused on design and planning parameters for reducing the effects of urban heat island and ultimately living in a better environment.

ContributorsRizwan, Ahmed Memon (Author) / Dennis, Leung Y.C. (Author) / Liu, Chunho (Author)
Created2007-09-27
141379-Thumbnail Image.png
Description

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social vulnerability. To understand how buildings perform in heat and potentially stress people, indoor air temperature changes when air conditioning is inaccessible are modeled for building archetypes in Los Angeles, California, and Phoenix, Arizona, when air conditioning is inaccessible is estimated.

An energy simulation model is used to estimate how quickly indoor air temperature changes when building archetypes are exposed to extreme heat. Building age and geometry (which together determine the building envelope material composition) are found to be the strongest indicators of thermal envelope performance. Older neighborhoods in Los Angeles and Phoenix (often more centrally located in the metropolitan areas) are found to contain the buildings whose interiors warm the fastest, raising particular concern because these regions are also forecast to experience temperature increases. To combat infrastructure vulnerability and provide heat refuge for residents, incentives should be adopted to strategically retrofit buildings where both socially vulnerable populations reside and increasing temperatures are forecast.

ContributorsNahlik, Matthew J. (Author) / Chester, Mikhail Vin (Author) / Pincetl, Stephanie Sabine, 1952- (Author) / Eisenman, David (Author) / Sivaraman, Deepak (Author) / English, Paul (Author)
Created2016-11-11
141380-Thumbnail Image.png
Description

Urban Heat Island (UHI) has significant impacts on the buildings energy consumption and outdoor air quality (OAQ). Various approaches, including observation and simulation techniques, have been proposed to understand the causes of UHI formation and to find the corresponding mitigation strategies. However, the causes of UHI are not the same

Urban Heat Island (UHI) has significant impacts on the buildings energy consumption and outdoor air quality (OAQ). Various approaches, including observation and simulation techniques, have been proposed to understand the causes of UHI formation and to find the corresponding mitigation strategies. However, the causes of UHI are not the same in different climates or city features. Thus, general conclusion cannot be made based on limited monitoring data.

With recent progress in computational tools, simulation methods have been used to study UHI. These approaches, however, are also not able to cover all the phenomena that simultaneously contribute to the formation of UHI. The shortcomings are mostly attributed to the weakness of the theories and computational cost.

This paper presents a review of the techniques used to study UHI. The abilities and limitations of each approach for the investigation of UHI mitigation and prediction are discussed. Treatment of important parameters including latent, sensible, storage, and anthropogenic heat in addition to treatment of radiation, effect of trees and pond, and boundary condition to simulate UHI is also presented. Finally, this paper discusses the application of integration approach as a future opportunity.

ContributorsMirzaei, Parham A. (Author) / Haghighat, Fariborz (Author)
Created2010-04-11
141384-Thumbnail Image.png
Description

There has been a wide range of low-carbon solutions proposed to mitigate climate change. However, such measures must be compatible with the local environment and living standards of residents to be brought to fruition. Measures that adversely affect residential environments will be difficult to implement, so the impacts of measures

There has been a wide range of low-carbon solutions proposed to mitigate climate change. However, such measures must be compatible with the local environment and living standards of residents to be brought to fruition. Measures that adversely affect residential environments will be difficult to implement, so the impacts of measures on the local environment must be taken into consideration during implementation. This study assessed the effects on urban heat islands of efforts to reduce CO2 emissions, as one environmental impact associated with climate change. A simulated assessment was conducted, using an urban canopy model coupled with a building energy model (CM-BEM), to evaluate the effects of five specific measures: solar shading of windows using curtains and blinds, improvement of the thermal insulation of building walls and roof surfaces, implementation of energy-saving measures related to indoor appliances, installation of solar photovoltaic (PV) panels, and adjustment of preset cooling temperatures. The study focused on these effects as they occur within typical urban districts of office buildings, fire-resistant housing, and wooden housing. Results indicated that many of the energy-saving measures have slight temperature lowering effects, but solar panel installation and improved heat insulation, both associated with changes in surface heat balances, tend to raise daytime temperatures to some extent. However, effects on daytime temperatures were in the range of 0.1–0.2 °C and, as such, none of the CO2 reduction measures considered was deemed a significant factor in raising urban temperatures.

ContributorsHirano, Yujiro (Author) / Yoshida, Yukiko (Author)
Created2016-04-27
141390-Thumbnail Image.png
Description

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model applied to spatially disaggregated data from Phoenix, Arizona. The empirical evidence from the observations in Phoenix suggests the following: (1) impervious surfaces contribute to increased residential water use by exacerbating UHI; (2) larger lots containing pools and mesic vegetation increase water demand by reducing diurnal temperature difference; and (3) smart design of urban environments needs to go beyond simplistic water body- and vegetation-based solutions for mitigating uncomfortably high temperatures and consider interactions between surface materials, land use, UHI, and water use.

ContributorsGuhathakurta, Subhrajit (Author) / Gober, Patricia (Author)
Created2010-07-08
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141408-Thumbnail Image.png
Description

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it solves many problems with one single solution. By investing in trees and the urban forest, the city can reduce its carbon footprint, decrease energy costs, reduce storm water runoff, increase biodiversity, address the urban heat island effect, clean the air, and increase property values. In addition, trees can help to create walkable streets and vibrant pedestrian places. More trees will not solve all the problems, but it is known that for every dollar invested in the urban forest results in an impressive return of $2.23 in benefits.

Phoenix has a strong foundation on which to build the future. Phoenix residents value natural resources and have voted repeatedly to invest in the living infrastructure. For instance, the Phoenix Parks and Preserve Initiative was passed twice with over 75 percent voter approval. This modest sales tax has purchased land for the Sonoran Preserve, funded habitat restoration efforts along Rio Salado, built new parks and planted hundreds of new trees. These projects and others like it provide the base for a healthy urban forest. Trees and engineered shade have the potential to be one of the city’s greatest assets and the Tree and Shade Master Plan provides the framework for creating a healthier, more livable and prosperous Phoenix.

The Urban Forest – Trees for People

The urban forest is a critical component of the living infrastructure. It benefits and attracts residents and tourists alike to live, work, shop and play in the city. Phoenix’s urban forest is a diverse ecosystem of soils, vegetation, trees, associated organisms, air, water, wildlife and people. The urban forest is found not only in parks, mountain preserves and native desert areas, but also in neighborhoods, commercial corridors, industrial parks and along streets. The urban forest is made up of a rich mosaic of private and public property that surrounds the city and provides many environmental, economic, and social benefits.

In order for the urban forest to be a profitable investment, Phoenix must do more than just plant trees. The entire lifecycle of the tree must be addressed because the current planting, maintenance, and irrigation practices are preventing many trees from providing their maximum return on investment. The Tree and Shade Master Plan provides a detailed roadmap to address these issues, as well as many others, with realistic and incremental steps. To succeed, this plan requires a long-term investment from the residents and leaders of Phoenix.

Trees are Solution Multipliers

Solution multipliers solve numerous problems simultaneously. Trees are a perfect example of a solution multiplier because when planted and maintained correctly, they can provide many economic, environmental, and social benefits. According to the US Forest Service, trees benefit the community by: providing a cooling effect that reduces energy costs; improving air quality; strengthening quality of place and the local economy; reducing storm water runoff; improving social connections; promoting smart growth and compact development; and creating walkable communities (US Forest Service and Urban & Community Forestry). Trees are high-yield assets; for example, the City of Chicago values its trees at $2.3 billion dollars. Trees have a documented return on investment (ROI) in Arizona of $2.23 for every $1 invested (US Department of Agriculture Forest Service). This demonstrates the important role that trees have within the city's economy. This is why it is critical to manage and invest in the urban forest; the health of the urban forest is closely linked to the economic health of the city.

Maintainable Infrastructure

Phoenix is a desert city that has a history of several decades of drought. In order to achieve a healthy urban forest we must use water wisely. Currently, 60 percent of Phoenix’s water is used outdoors, mainly for landscape irrigation. According to the City of Phoenix’s Water Services Department, Phoenix has an adequate sustainable water supply to meet the State of Arizona’s 100-year assured water supply standard. This includes growth in Phoenix’s system water demand over the next 20 years or more. Nonetheless, to achieve a maintainable urban forest, water must be used more efficiently. This is done with high-efficiency irrigation systems, use of drought-tolerant plant material, strategic placement of shade corridors and continued education. In order for a healthy urban forest to exist, it must be coupled with strong water management.

Implementation

The Urban Forest Infrastructure Team and the Parks and Recreation Department are charged with coordinating and maintaining the Tree and Shade Master Plan. Many City departments will implement the plan as they work to fulfill their own missions. The Tree and Shade Master Plan will not only provide a framework to achieve an average 25 percent tree canopy coverage by 2030 but will also help to achieve many goals and policies from the Green Phoenix Initiative and the voter ratified General Plan.

The plan proposes incremental steps to achieve the 2030 vision and canopy goal. The City of Phoenix is beginning to put a process in place to preserve, maintain, and redevelop the urban forest. This plan intends to increase the quality of life and economic vitality of the city by recommending ways to create a sustainable urban forest for future generations.

ContributorsCity of Phoenix (Contributor)
Created2010