This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

141438-Thumbnail Image.png
Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

ContributorsHondula, David M. (Author) / Georgescu, Matei (Author) / Balling, Jr., Robert C. (Author)
Created2014-04-28
141369-Thumbnail Image.png
Description

Cities are developing innovative strategies to combat climate change but there remains little knowledge of the winners and losers from climate-adaptive land use planning and design. We examine the distribution of health benefits associated with land use policies designed to increase vegetation and surface reflectivity in three US metropolitan areas:

Cities are developing innovative strategies to combat climate change but there remains little knowledge of the winners and losers from climate-adaptive land use planning and design. We examine the distribution of health benefits associated with land use policies designed to increase vegetation and surface reflectivity in three US metropolitan areas: Atlanta, GA, Philadelphia, PA, and Phoenix, AZ. Projections of population and land cover at the census tract scale were combined with climate models for the year 2050 at 4 km × 4 km resolution to produce future summer temperatures which were input into a comparative risk assessment framework for the temperature-mortality relationship. The findings suggest disparities in the effectiveness of urban heat management strategies by age, income, and race. We conclude that, to be most protective of human health, urban heat management must prioritize areas of greatest population vulnerability.

ContributorsVargo, Jason (Author) / Stone, Brian (Author) / Habeeb, Dana (Author) / Liu, Peng (Author) / Russell, Armistead (Author)
Created2016-09-07
141384-Thumbnail Image.png
Description

There has been a wide range of low-carbon solutions proposed to mitigate climate change. However, such measures must be compatible with the local environment and living standards of residents to be brought to fruition. Measures that adversely affect residential environments will be difficult to implement, so the impacts of measures

There has been a wide range of low-carbon solutions proposed to mitigate climate change. However, such measures must be compatible with the local environment and living standards of residents to be brought to fruition. Measures that adversely affect residential environments will be difficult to implement, so the impacts of measures on the local environment must be taken into consideration during implementation. This study assessed the effects on urban heat islands of efforts to reduce CO2 emissions, as one environmental impact associated with climate change. A simulated assessment was conducted, using an urban canopy model coupled with a building energy model (CM-BEM), to evaluate the effects of five specific measures: solar shading of windows using curtains and blinds, improvement of the thermal insulation of building walls and roof surfaces, implementation of energy-saving measures related to indoor appliances, installation of solar photovoltaic (PV) panels, and adjustment of preset cooling temperatures. The study focused on these effects as they occur within typical urban districts of office buildings, fire-resistant housing, and wooden housing. Results indicated that many of the energy-saving measures have slight temperature lowering effects, but solar panel installation and improved heat insulation, both associated with changes in surface heat balances, tend to raise daytime temperatures to some extent. However, effects on daytime temperatures were in the range of 0.1–0.2 °C and, as such, none of the CO2 reduction measures considered was deemed a significant factor in raising urban temperatures.

ContributorsHirano, Yujiro (Author) / Yoshida, Yukiko (Author)
Created2016-04-27