This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 6 of 6
Filtering by

Clear all filters

141425-Thumbnail Image.png
Description

Using National Land Cover Data we analyzed land fragmentation trends from 1992 to 2001 in five southwestern cities associated with Long Term Ecological Research (LTER) sites.

ContributorsYork, Abigail M. (Author) / Shrestha, Milan (Author) / Boone, Christopher G. (Author) / Zhang, Sainan (Author) / Harrington, Jr., John A. (Author) / Prebyl, Thomas J. (Author) / Swann, Amaris (Author) / Agar, Michael (Author) / Antolin, Michael F. (Author) / Nolen, Barbara (Author) / Wright, John B. (Author) / Skaggs, Rhonda (Author)
Created2011-02-11
141438-Thumbnail Image.png
Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

ContributorsHondula, David M. (Author) / Georgescu, Matei (Author) / Balling, Jr., Robert C. (Author)
Created2014-04-28
141369-Thumbnail Image.png
Description

Cities are developing innovative strategies to combat climate change but there remains little knowledge of the winners and losers from climate-adaptive land use planning and design. We examine the distribution of health benefits associated with land use policies designed to increase vegetation and surface reflectivity in three US metropolitan areas:

Cities are developing innovative strategies to combat climate change but there remains little knowledge of the winners and losers from climate-adaptive land use planning and design. We examine the distribution of health benefits associated with land use policies designed to increase vegetation and surface reflectivity in three US metropolitan areas: Atlanta, GA, Philadelphia, PA, and Phoenix, AZ. Projections of population and land cover at the census tract scale were combined with climate models for the year 2050 at 4 km × 4 km resolution to produce future summer temperatures which were input into a comparative risk assessment framework for the temperature-mortality relationship. The findings suggest disparities in the effectiveness of urban heat management strategies by age, income, and race. We conclude that, to be most protective of human health, urban heat management must prioritize areas of greatest population vulnerability.

ContributorsVargo, Jason (Author) / Stone, Brian (Author) / Habeeb, Dana (Author) / Liu, Peng (Author) / Russell, Armistead (Author)
Created2016-09-07
141375-Thumbnail Image.png
Description

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic heat sources are the main causes of UHI. The two heat sources increase the temperatures of an urban area as compared to its surroundings, which is known as Urban Heat Island Intensity (UHII). The problem is even worse in cities or metropolises with large population and extensive economic activities. The estimated three billion people living in the urban areas in the world are directly exposed to the problem, which will be increased significantly in the near future. Due to the severity of the problem, vast research effort has been dedicated and a wide range of literature is available for the subject. The literature available in this area includes the latest research approaches, concepts, methodologies, latest investigation tools and mitigation measures. This study was carried out to review and summarize this research area through an investigation of the most important feature of UHI. It was concluded that the heat re-radiated by the urban structures plays the most important role which should be investigated in details to study urban heating especially the UHI. It was also concluded that the future research should be focused on design and planning parameters for reducing the effects of urban heat island and ultimately living in a better environment.

ContributorsRizwan, Ahmed Memon (Author) / Dennis, Leung Y.C. (Author) / Liu, Chunho (Author)
Created2007-09-27
141402-Thumbnail Image.png
Description

The forthcoming century will see cities exposed to temperature rises from urbanisation as well as greenhouse gas induced radiative forcing. Increasing levels of urban heat will have a direct impact upon the people living in cities in terms of health, but will also have an indirect effect by impacting upon

The forthcoming century will see cities exposed to temperature rises from urbanisation as well as greenhouse gas induced radiative forcing. Increasing levels of urban heat will have a direct impact upon the people living in cities in terms of health, but will also have an indirect effect by impacting upon the critical infrastructure networks of the city itself (e.g., ICT, transport and energy). Some infrastructures are more resistant than others, but there is a growing reliance on the energy network to provide the power for all of our future critical infrastructure networks. Unfortunately, the energy network is far from resilient from the effects of urban heat and is set to face a perfect storm of increasing temperatures and loadings as demand increases for air conditioning, refrigeration, an electrified transport network and a high-speed ICT network. The result is that any failure on the energy network could quickly cascade across much of our critical infrastructure. System vulnerabilities will become increasingly apparent as the impacts of climate change begin to manifest and this paper calls for interdisciplinary action outlining the need for high resolution monitoring and modelling of the impact of urban heat on infrastructure.

ContributorsChapman, Lee (Author) / Antunes Azevedo, Juliana (Author) / Tatiana, Prieto-Lopez (Author)
Created2013-04-01
141407-Thumbnail Image.png
Description

This paper explores how urbanization, through its role in the evolution of Urban Heat Island (UHI), affects residential water consumption. Using longitudinal data and drawing on a mesoscale atmospheric model, we examine how variations in surface temperature at the census tract level have affected water use in single family residences

This paper explores how urbanization, through its role in the evolution of Urban Heat Island (UHI), affects residential water consumption. Using longitudinal data and drawing on a mesoscale atmospheric model, we examine how variations in surface temperature at the census tract level have affected water use in single family residences in Phoenix, Arizona. Results show that each Fahrenheit rise in nighttime temperature increases water consumption by 1.4%. This temperature effect is found to vary significantly with lot size and pool size. The study provides insights into the links between urban form and water use, through the dynamics of UHI.

ContributorsAggarwal, Rimjhim M. (Author) / Guhathakurta, Subhrajit (Author) / Grossman‐Clarke, Susanne (Author) / Lathey, Vasudha (Author)
Created2012-06-14