This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 5 of 5
Filtering by

Clear all filters

141438-Thumbnail Image.png
Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

ContributorsHondula, David M. (Author) / Georgescu, Matei (Author) / Balling, Jr., Robert C. (Author)
Created2014-04-28
141369-Thumbnail Image.png
Description

Cities are developing innovative strategies to combat climate change but there remains little knowledge of the winners and losers from climate-adaptive land use planning and design. We examine the distribution of health benefits associated with land use policies designed to increase vegetation and surface reflectivity in three US metropolitan areas:

Cities are developing innovative strategies to combat climate change but there remains little knowledge of the winners and losers from climate-adaptive land use planning and design. We examine the distribution of health benefits associated with land use policies designed to increase vegetation and surface reflectivity in three US metropolitan areas: Atlanta, GA, Philadelphia, PA, and Phoenix, AZ. Projections of population and land cover at the census tract scale were combined with climate models for the year 2050 at 4 km × 4 km resolution to produce future summer temperatures which were input into a comparative risk assessment framework for the temperature-mortality relationship. The findings suggest disparities in the effectiveness of urban heat management strategies by age, income, and race. We conclude that, to be most protective of human health, urban heat management must prioritize areas of greatest population vulnerability.

ContributorsVargo, Jason (Author) / Stone, Brian (Author) / Habeeb, Dana (Author) / Liu, Peng (Author) / Russell, Armistead (Author)
Created2016-09-07
141390-Thumbnail Image.png
Description

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model

While previous studies have shown that urban heat islands (UHI) tend to increase residential water use, they have not yet analyzed the feedbacks among vegetation intensity, diurnal temperature variation, water use, and characteristics of the built environment. This study examines these feedback relationships with the help of a path model applied to spatially disaggregated data from Phoenix, Arizona. The empirical evidence from the observations in Phoenix suggests the following: (1) impervious surfaces contribute to increased residential water use by exacerbating UHI; (2) larger lots containing pools and mesic vegetation increase water demand by reducing diurnal temperature difference; and (3) smart design of urban environments needs to go beyond simplistic water body- and vegetation-based solutions for mitigating uncomfortably high temperatures and consider interactions between surface materials, land use, UHI, and water use.

ContributorsGuhathakurta, Subhrajit (Author) / Gober, Patricia (Author)
Created2010-07-08
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141408-Thumbnail Image.png
Description

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it

Creating a Healthier, More Livable and Prosperous Phoenix

Phoenix is poised to become the next great American City. The Tree and Shade Master Plan presents Phoenix’s leaders and residents a roadmap to creating a 21st Century desert city. The urban forest is a keystone to creating a sustainable city because it solves many problems with one single solution. By investing in trees and the urban forest, the city can reduce its carbon footprint, decrease energy costs, reduce storm water runoff, increase biodiversity, address the urban heat island effect, clean the air, and increase property values. In addition, trees can help to create walkable streets and vibrant pedestrian places. More trees will not solve all the problems, but it is known that for every dollar invested in the urban forest results in an impressive return of $2.23 in benefits.

Phoenix has a strong foundation on which to build the future. Phoenix residents value natural resources and have voted repeatedly to invest in the living infrastructure. For instance, the Phoenix Parks and Preserve Initiative was passed twice with over 75 percent voter approval. This modest sales tax has purchased land for the Sonoran Preserve, funded habitat restoration efforts along Rio Salado, built new parks and planted hundreds of new trees. These projects and others like it provide the base for a healthy urban forest. Trees and engineered shade have the potential to be one of the city’s greatest assets and the Tree and Shade Master Plan provides the framework for creating a healthier, more livable and prosperous Phoenix.

The Urban Forest – Trees for People

The urban forest is a critical component of the living infrastructure. It benefits and attracts residents and tourists alike to live, work, shop and play in the city. Phoenix’s urban forest is a diverse ecosystem of soils, vegetation, trees, associated organisms, air, water, wildlife and people. The urban forest is found not only in parks, mountain preserves and native desert areas, but also in neighborhoods, commercial corridors, industrial parks and along streets. The urban forest is made up of a rich mosaic of private and public property that surrounds the city and provides many environmental, economic, and social benefits.

In order for the urban forest to be a profitable investment, Phoenix must do more than just plant trees. The entire lifecycle of the tree must be addressed because the current planting, maintenance, and irrigation practices are preventing many trees from providing their maximum return on investment. The Tree and Shade Master Plan provides a detailed roadmap to address these issues, as well as many others, with realistic and incremental steps. To succeed, this plan requires a long-term investment from the residents and leaders of Phoenix.

Trees are Solution Multipliers

Solution multipliers solve numerous problems simultaneously. Trees are a perfect example of a solution multiplier because when planted and maintained correctly, they can provide many economic, environmental, and social benefits. According to the US Forest Service, trees benefit the community by: providing a cooling effect that reduces energy costs; improving air quality; strengthening quality of place and the local economy; reducing storm water runoff; improving social connections; promoting smart growth and compact development; and creating walkable communities (US Forest Service and Urban & Community Forestry). Trees are high-yield assets; for example, the City of Chicago values its trees at $2.3 billion dollars. Trees have a documented return on investment (ROI) in Arizona of $2.23 for every $1 invested (US Department of Agriculture Forest Service). This demonstrates the important role that trees have within the city's economy. This is why it is critical to manage and invest in the urban forest; the health of the urban forest is closely linked to the economic health of the city.

Maintainable Infrastructure

Phoenix is a desert city that has a history of several decades of drought. In order to achieve a healthy urban forest we must use water wisely. Currently, 60 percent of Phoenix’s water is used outdoors, mainly for landscape irrigation. According to the City of Phoenix’s Water Services Department, Phoenix has an adequate sustainable water supply to meet the State of Arizona’s 100-year assured water supply standard. This includes growth in Phoenix’s system water demand over the next 20 years or more. Nonetheless, to achieve a maintainable urban forest, water must be used more efficiently. This is done with high-efficiency irrigation systems, use of drought-tolerant plant material, strategic placement of shade corridors and continued education. In order for a healthy urban forest to exist, it must be coupled with strong water management.

Implementation

The Urban Forest Infrastructure Team and the Parks and Recreation Department are charged with coordinating and maintaining the Tree and Shade Master Plan. Many City departments will implement the plan as they work to fulfill their own missions. The Tree and Shade Master Plan will not only provide a framework to achieve an average 25 percent tree canopy coverage by 2030 but will also help to achieve many goals and policies from the Green Phoenix Initiative and the voter ratified General Plan.

The plan proposes incremental steps to achieve the 2030 vision and canopy goal. The City of Phoenix is beginning to put a process in place to preserve, maintain, and redevelop the urban forest. This plan intends to increase the quality of life and economic vitality of the city by recommending ways to create a sustainable urban forest for future generations.

ContributorsCity of Phoenix (Contributor)
Created2010