This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

141431-Thumbnail Image.png
Description

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes

The relationship between the characteristics of the urban land system and land surface temperature (LST) has received increasing attention in urban heat island and sustainability research, especially for desert cities. This research generally employs medium or coarser spatial resolution data and primarily focuses on the effects of a few classes of land-cover composition and pattern at the neighborhood or larger level using regression models. This study explores the effects of land system architecture—composition and configuration, both pattern and shape, of fine-grain land-cover classes—on LST of single family residential parcels in the Phoenix, Arizona (southwestern USA) metropolitan area. A 1 m resolution land-cover map is used to calculate land architecture metrics at the parcel level, and 6.8 m resolution MODIS/ASTER data are employed to retrieve LST. Linear mixed-effects models quantify the impacts of land configuration on LST at the parcel scale, controlling for the effects of land composition and neighborhood characteristics. Results indicate that parcel-level land-cover composition has the strongest association with daytime and nighttime LST, but the configuration of this cover, foremost compactness and concentration, also affects LST, with different associations between land architecture and LST at nighttime and daytime. Given information on land system architecture at the parcel level, additional information based on geographic and socioeconomic variables does not improve the generalization capability of the statistical models. The results point the way towards parcel-level land-cover design that helps to mitigate the urban heat island effect for warm desert cities, although tradeoffs with other sustainability indicators must be considered.

ContributorsLi, Xiaoxiao (Author) / Kamarianakis, Yiannis (Author) / Ouyang, Yun (Author) / Turner II, B. L. (Author) / Brazel, Anthony J. (Author)
Created2017-02-14
141433-Thumbnail Image.png
Description

This study seeks to determine the role of land architecture—the composition and configuration of land cover—as well as cadastral/demographic/economic factors on land surface temperature (LST) and the surface urban heat island effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with 120mLandsat-derived land surface

This study seeks to determine the role of land architecture—the composition and configuration of land cover—as well as cadastral/demographic/economic factors on land surface temperature (LST) and the surface urban heat island effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with 120mLandsat-derived land surface temperature, decomposed to 30 m, a new measure of configuration, the normalized moment of inertia, and U.S. Census data to address the question for two randomly selected samples comprising 523 and 545 residential neighborhoods (census blocks) in the city. The results indicate that, contrary to most other studies, land configuration has a stronger influence on LST than land composition. In addition, both land configuration and architecture combined with cadastral, demographic, and economic variables, capture a significant amount of explained variance in LST. The results indicate that attention to land architecture in the development of or reshaping of neighborhoods may ameliorate the summer extremes in LST.

ContributorsLi, Xiaoxiao (Author) / Li, Wenwen (Author) / Middel, Ariane (Author) / Harlan, Sharon L. (Author) / Brazel, Anthony J. (Author) / Turner II, B. L. (Author)
Created2015-12-29
141374-Thumbnail Image.png
Description

Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate.

Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate. The agricultural sector in both developing and developed areas needs to understand what is at stake and to prepare for the potential for change wisely.

Despite tremendous improvements in technology and crop yield potential, food production remains highly dependent on climate, because solar radiation, temperature, and precipitation are the main drivers of crop growth. Plant diseases and pest infestations, as well as the supply of and demand for irrigation water are influenced by climate. For example, in recent decades, the persistent drought in the Sahelian region of Africa has caused continuing deterioration of food production[1,2]; the 1988 Mid-west drought led to a 30% reduction in U.S. corn production and cost taxpayers $3 billion in direct relief payments to farmers[3] and, weather anomalies associated with the 1997-98 El Niño affected agriculture adversely in Nordeste, Brazil and Indonesia[4]. Earlier in the century, the 1930s U.S. Southern Great Plains drought caused some 200,000 farm bankruptcies in the Dust Bowl; yields of wheat and corn were reduced by as much as 50%[5].

The aim of this article is to discuss the effects of climate variability and change on food production, risk of malnutrition, and incidence of weeds, insects, and diseases. It focuses on the effects of extreme weather events on agriculture, looking at examples from the recent past and to future projections. Major incidents of climate variability are contrasted, including the effects of the El Niño-Southern Oscillation. Finally, projected scenarios of future climate change impacts on crop production and risk of hunger in major agricultural regions are presented.

Altered weather patterns can increase crop vulnerability to infection, pest infestations, and choking weeds. Ranges of crop weeds, insects, and diseases are projected to expand to higher latitudes[6,7]. Shifts in climate in different world regions may have different and contrasting effects. Some parts of the world may benefit from global climate change (at least in the short term), but large regions of the developing world may experience reduced food supplies and potential increase in malnutrition[2,3]. Changes in food supply could lead to permanent or semi-permanent displacement of populations in developing countries, consequent overcrowding and associated diseases, such as tuberculosis[8].

ContributorsRosenzweig, Cynthia (Author) / Iglesias, Ana (Author) / Yang, X.B. (Author) / Epstein, Paul R. (Author) / Chivian, Eric (Author)
Created2001-12