This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

141374-Thumbnail Image.png
Description

Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate.

Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate. The agricultural sector in both developing and developed areas needs to understand what is at stake and to prepare for the potential for change wisely.

Despite tremendous improvements in technology and crop yield potential, food production remains highly dependent on climate, because solar radiation, temperature, and precipitation are the main drivers of crop growth. Plant diseases and pest infestations, as well as the supply of and demand for irrigation water are influenced by climate. For example, in recent decades, the persistent drought in the Sahelian region of Africa has caused continuing deterioration of food production[1,2]; the 1988 Mid-west drought led to a 30% reduction in U.S. corn production and cost taxpayers $3 billion in direct relief payments to farmers[3] and, weather anomalies associated with the 1997-98 El Niño affected agriculture adversely in Nordeste, Brazil and Indonesia[4]. Earlier in the century, the 1930s U.S. Southern Great Plains drought caused some 200,000 farm bankruptcies in the Dust Bowl; yields of wheat and corn were reduced by as much as 50%[5].

The aim of this article is to discuss the effects of climate variability and change on food production, risk of malnutrition, and incidence of weeds, insects, and diseases. It focuses on the effects of extreme weather events on agriculture, looking at examples from the recent past and to future projections. Major incidents of climate variability are contrasted, including the effects of the El Niño-Southern Oscillation. Finally, projected scenarios of future climate change impacts on crop production and risk of hunger in major agricultural regions are presented.

Altered weather patterns can increase crop vulnerability to infection, pest infestations, and choking weeds. Ranges of crop weeds, insects, and diseases are projected to expand to higher latitudes[6,7]. Shifts in climate in different world regions may have different and contrasting effects. Some parts of the world may benefit from global climate change (at least in the short term), but large regions of the developing world may experience reduced food supplies and potential increase in malnutrition[2,3]. Changes in food supply could lead to permanent or semi-permanent displacement of populations in developing countries, consequent overcrowding and associated diseases, such as tuberculosis[8].

ContributorsRosenzweig, Cynthia (Author) / Iglesias, Ana (Author) / Yang, X.B. (Author) / Epstein, Paul R. (Author) / Chivian, Eric (Author)
Created2001-12
141384-Thumbnail Image.png
Description

There has been a wide range of low-carbon solutions proposed to mitigate climate change. However, such measures must be compatible with the local environment and living standards of residents to be brought to fruition. Measures that adversely affect residential environments will be difficult to implement, so the impacts of measures

There has been a wide range of low-carbon solutions proposed to mitigate climate change. However, such measures must be compatible with the local environment and living standards of residents to be brought to fruition. Measures that adversely affect residential environments will be difficult to implement, so the impacts of measures on the local environment must be taken into consideration during implementation. This study assessed the effects on urban heat islands of efforts to reduce CO2 emissions, as one environmental impact associated with climate change. A simulated assessment was conducted, using an urban canopy model coupled with a building energy model (CM-BEM), to evaluate the effects of five specific measures: solar shading of windows using curtains and blinds, improvement of the thermal insulation of building walls and roof surfaces, implementation of energy-saving measures related to indoor appliances, installation of solar photovoltaic (PV) panels, and adjustment of preset cooling temperatures. The study focused on these effects as they occur within typical urban districts of office buildings, fire-resistant housing, and wooden housing. Results indicated that many of the energy-saving measures have slight temperature lowering effects, but solar panel installation and improved heat insulation, both associated with changes in surface heat balances, tend to raise daytime temperatures to some extent. However, effects on daytime temperatures were in the range of 0.1–0.2 °C and, as such, none of the CO2 reduction measures considered was deemed a significant factor in raising urban temperatures.

ContributorsHirano, Yujiro (Author) / Yoshida, Yukiko (Author)
Created2016-04-27