This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

141374-Thumbnail Image.png
Description

Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate.

Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate. The agricultural sector in both developing and developed areas needs to understand what is at stake and to prepare for the potential for change wisely.

Despite tremendous improvements in technology and crop yield potential, food production remains highly dependent on climate, because solar radiation, temperature, and precipitation are the main drivers of crop growth. Plant diseases and pest infestations, as well as the supply of and demand for irrigation water are influenced by climate. For example, in recent decades, the persistent drought in the Sahelian region of Africa has caused continuing deterioration of food production[1,2]; the 1988 Mid-west drought led to a 30% reduction in U.S. corn production and cost taxpayers $3 billion in direct relief payments to farmers[3] and, weather anomalies associated with the 1997-98 El Niño affected agriculture adversely in Nordeste, Brazil and Indonesia[4]. Earlier in the century, the 1930s U.S. Southern Great Plains drought caused some 200,000 farm bankruptcies in the Dust Bowl; yields of wheat and corn were reduced by as much as 50%[5].

The aim of this article is to discuss the effects of climate variability and change on food production, risk of malnutrition, and incidence of weeds, insects, and diseases. It focuses on the effects of extreme weather events on agriculture, looking at examples from the recent past and to future projections. Major incidents of climate variability are contrasted, including the effects of the El Niño-Southern Oscillation. Finally, projected scenarios of future climate change impacts on crop production and risk of hunger in major agricultural regions are presented.

Altered weather patterns can increase crop vulnerability to infection, pest infestations, and choking weeds. Ranges of crop weeds, insects, and diseases are projected to expand to higher latitudes[6,7]. Shifts in climate in different world regions may have different and contrasting effects. Some parts of the world may benefit from global climate change (at least in the short term), but large regions of the developing world may experience reduced food supplies and potential increase in malnutrition[2,3]. Changes in food supply could lead to permanent or semi-permanent displacement of populations in developing countries, consequent overcrowding and associated diseases, such as tuberculosis[8].

ContributorsRosenzweig, Cynthia (Author) / Iglesias, Ana (Author) / Yang, X.B. (Author) / Epstein, Paul R. (Author) / Chivian, Eric (Author)
Created2001-12
141418-Thumbnail Image.png
Description

Presentation by David Sailor, professor in the School of Geographical Sciences and Urban Planning and director of the Urban Climate Research Center at ASU. Sailer's presentation addresses how to define urban heat islands (UHI), and decisions about why and how to measure these complex ecosystems.

ContributorsSailor, David (Author)
Created2017-09-07
141423-Thumbnail Image.png
Description

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.

Discussion:
We define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time–activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat.

Conclusions:
Personal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure.

ContributorsKuras, Evan R. (Author) / Richardson, Molly B. (Author) / Calkins, Mirian M. (Author) / Ebi, Kristie L. (Author) / Gohlke, Julia M. (Author) / Hess, Jeremy J. (Author) / Hondula, David M. (Author) / Kintziger, Kristina W. (Author) / Jagger, Meredith A. (Author) / Middel, Ariane (Author) / Scott, Anna A. (Author) / Spector, June T. (Contributor) / Uejio, Christopher K. (Author) / Vanos, Jennifer K. (Author) / Zaitchik, Benjamin F. (Author)
Created2017-08