This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

141370-Thumbnail Image.png
Description

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is registered not by exposure to hazards (perturbations and stresses) alone but also resides in the sensitivity and resilience of the system experiencing such hazards. This recognition requires revisions and enlargements in the basic design of vulnerability assessments, including the capacity to treat coupled human–environment systems and those linkages within and without the systems that affect their vulnerability. A vulnerability framework for the assessment of coupled human–environment systems is presented.

Research on global environmental change has significantly improved our understanding of the structure and function of the biosphere and the human impress on both (1). The emergence of “sustainability science” (2–4) builds toward an understanding of the human–environment condition with the dual objectives of meeting the needs of society while sustaining the life support systems of the planet. These objectives, in turn, require improved dialogue between science and decision making (5–8). The vulnerability of coupled human–environment systems is one of the central elements of this dialogue and sustainability research (6, 9–11). It directs attention to such questions as: Who and what are vulnerable to the multiple environmental and human changes underway, and where? How are these changes and their consequences attenuated or amplified by different human and environmental conditions? What can be done to reduce vulnerability to change? How may more resilient and adaptive communities and societies be built?

Answers to these and related questions require conceptual frameworks that account for the vulnerability of coupled human–environment systems with diverse and complex linkages. Various expert communities have made considerable progress in pointing the way toward the design of these frameworks (10, 11). These advances are briefly reviewed here and, drawing on them, we present a conceptual framework of vulnerability developed by the Research and Assessment Systems for Sustainability Program (http://sust.harvard.edu) that produced the set of works in this Special Feature of PNAS. The framework aims to make vulnerability analysis consistent with the concerns of sustainability and global environmental change science. The case study by Turner et al. (12) in this issue of PNAS illustrates how the framework informs vulnerability assessments.

ContributorsTurner II, B. L. (Author) / Kasperson, Roger E. (Author) / Matson, Pamela A. (Author) / McCarthy, James J. (Author) / Corell, Robert W. (Author) / Christensen, Lindsey (Author) / Eckley, Noelle (Author) / Kasperson, Jeanne X. (Author) / Luers, Amy (Author) / Martello, Marybeth L. (Author) / Polsky, Colin (Author) / Pulsipher, Alexander (Author) / Schiller, Andrew (Author)
Created2003-03-07
141383-Thumbnail Image.png
Description

Transitions towards sustainability are urgently needed to address the interconnected challenges of economic development, ecological integrity, and social justice, from local to global scales. Around the world, collaborative science-society initiatives are forming to conduct experiments in support of sustainability transitions. Such experiments, if carefully designed, provide significant learning opportunities for

Transitions towards sustainability are urgently needed to address the interconnected challenges of economic development, ecological integrity, and social justice, from local to global scales. Around the world, collaborative science-society initiatives are forming to conduct experiments in support of sustainability transitions. Such experiments, if carefully designed, provide significant learning opportunities for making progress on transition efforts. Yet, there is no broadly applicable evaluative scheme available to capture this critical information across a large number of cases, and to guide the design of transition experiments. To address this gap, the article develops such a scheme, in a tentative form, drawing on evaluative research and sustainability transitions scholarship, alongside insights from empirical cases. We critically discuss the scheme's key features of being generic, comprehensive, operational, and formative. Furthermore, we invite scholars and practitioners to apply, reflect and further develop the proposed tentative scheme – making evaluation and experiments objects of learning.

ContributorsLuederitz, Christopher (Author) / Schäpke, Niko (Author) / Wiek, Arnim (Author) / Lang, Daniel J. (Author) / Bergmann, Matthias (Author) / Bos, Joannette J (Author) / Burch, Sarah (Author) / Davies, Anna (Author) / Evans, James (Author) / König, Ariane (Author) / Farrelly, Megan A. (Author) / Forrest, Nigel (Author) / Frantzeskaki, Niki (Author) / Gibson, Robert B. (Author) / Kay, Braden (Author) / Loorbach, Derk (Author) / McCormick, Kes (Author) / Parodi, Oliver (Author) / Rauschmayer, Felix (Author) / Schneidewind, Uwe (Author) / Stauffacher, Michael (Author) / Stelzer, Franziska (Author) / Trencher, Gregory (Author) / Venjakob, Johannes (Author) / Vergragt, Philip J. (Author) / von Wehrden, Henrik (Author) / Westley, Frances R. (Author)
Created2016-09-03
141418-Thumbnail Image.png
Description

Presentation by David Sailor, professor in the School of Geographical Sciences and Urban Planning and director of the Urban Climate Research Center at ASU. Sailer's presentation addresses how to define urban heat islands (UHI), and decisions about why and how to measure these complex ecosystems.

ContributorsSailor, David (Author)
Created2017-09-07