This repository houses peer-reviewed literature, data sets, reports, and other materials generated by researchers, practitioners, and other regional stakeholders that may be informative for local and regional efforts mitigating the adverse impacts of heat. The collection is intended to serve as a resource for anyone looking for information on top research findings, reports, or initiatives related to heat and air quality. This includes community, local, state, and regional partners and other interested parties contributing to heat and air quality planning, preparedness, and response activities.

More Information: The Phoenix Regional Heat and Air Quality Knowledge Repository is product of the Healthy Urban Environments (HUE) initiative in partnership with the Urban Climate Research Center. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

141437-Thumbnail Image.png
Description

Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over

Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ~53% of diurnally averaged total electric demand, ranging from ~35% during early morning to ~65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

ContributorsSalamanca, F. (Author) / Georgescu, Matei (Author) / Mahalov, A. (Author) / Moustaoui, M. (Author) / Wang, M. (Author) / Svoma, B. M. (Author)
Created2013-08-29
141366-Thumbnail Image.png
Description

Public transit systems have been identified as a critical component to reducing energy use and greenhouse gas emissions associated with the transportation sector to mitigate future climate change impacts. A unique aspect of public transit is its use almost always necessitates environmental exposure and the design of these systems directly

Public transit systems have been identified as a critical component to reducing energy use and greenhouse gas emissions associated with the transportation sector to mitigate future climate change impacts. A unique aspect of public transit is its use almost always necessitates environmental exposure and the design of these systems directly influences rider exposure via rider ingress, egress, and waiting. There is a tension between policies and programs which promote transit use to combat climate change and the potential impact an uncertain climate future may have on transit riders.

In the American Southwest, extreme heat events, a known public health threat, are projected to increase between 150 and 840% over the next decade, and may be a health hazard for transit riders. There are opportunities to incorporate rider health risks in the overall planning process and develop alternative transit schedules during extreme heat events to minimize these risks. Using Los Angeles Metro as a case studies, we show that existing transit vehicles can be reallocated across the system to significantly reduce exposure for riders who are more vulnerable to heat while maintaining a minimum level of service across the system. As cities continue to invest in public transit it is critical for them to understand transit use as an exposure pathway for riders and to develop strategies to mitigate potential health risks.

ContributorsFraser, Andrew M. (Author) / Chester, Mikhail Vin (Author)
Created2017-10-24