Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 31
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133172-Thumbnail Image.png
Description
This thesis explores cybersecurity as a profession and whether it belongs in academia. It also explores exactly how it should be implemented into universities. Whether in a bachelor's program or master's program, cybersecurity degree or cybersecurity concentration, engineering school or business school, cybersecurity has a place in higher education that

This thesis explores cybersecurity as a profession and whether it belongs in academia. It also explores exactly how it should be implemented into universities. Whether in a bachelor's program or master's program, cybersecurity degree or cybersecurity concentration, engineering school or business school, cybersecurity has a place in higher education that plays an integral role in helping fix the issue of a lack of cybersecurity professionals. At Arizona State University, a cybersecurity concentration currently exists in the engineering school at both the bachelor's and master's level as well as the business school at the bachelor level. The one location it is missing from is the master's level of the business school. The goal of this report is to suggest a change to the specific curriculum in the Information Systems Department at the W.P. Carey School of Business. This thesis compares the curriculum of the Master of Science in Information Management (MSIM) program at Arizona State to eight other programs around the country that either offer a cybersecurity concentration option, offer cybersecurity degrees, or have highly ranked MSIM programs. A new curriculum is recommended that includes greater flexibility for students in customizing their education to specific career fields within information systems, offers multiple certificate options including cybersecurity, and better matches what the other highly ranked programs are offering to students. This curriculum is not only better for students attending or seeking Arizona State University but better for the University itself. It offers a more well-rounded scope of topics than the current program does while maintaining the identity and strengths of the current program.
ContributorsWelcome, Anthony (Author) / Sopha, Matthew (Thesis director) / Mazzola, Daniel (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134708-Thumbnail Image.png
Description
Communication between the physical and digital world via software, embedded sensors and network connectivity is referred to by the term, the "Internet of Things" (IoT) [1]. The IoT transforms natural objects into "smart devices" to improve accuracy, reduce human intervention, and provide real-time data [1]. Smart weather stations that upload

Communication between the physical and digital world via software, embedded sensors and network connectivity is referred to by the term, the "Internet of Things" (IoT) [1]. The IoT transforms natural objects into "smart devices" to improve accuracy, reduce human intervention, and provide real-time data [1]. Smart weather stations that upload information, including temperature and humidity, to the Internet are already available. However, these products are often expensive and programmed only for single-purpose use. The LoRa Weather Station is a low cost, low power and low maintenance IoT solution that combines Microchip Technology's LoRa RN2903 module along with Mikroelektronika's Weather Click sensor. This report discusses how the LoRa Weather Station was created, primarily focusing on the LoRa gateway setup by a Raspberry Pi local web server. This project was completed by four electrical engineering students in the EEE 488 and 489 Senior Design courses at Arizona State University from Fall 2016 to Spring 2017. Total expenses for the project were $717.84, including the LoRa gateway which amounted to $104 (see Appendix C for the Bill of Materials).
ContributorsLeon, Miranda Cristina (Author) / Kozicki, Michael (Thesis director) / Balaban, Mehmet (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132912-Thumbnail Image.png
Description
In this project, an existing waveform generator designed by the vagus nerve stimulation (VNS) technology firm Hoolest Performance Technologies was modified and characterized. Voltage feedback and current feedback systems were designed in order to improve output voltage and current regulation. A wireless communication system was implemented onboard the newly designed

In this project, an existing waveform generator designed by the vagus nerve stimulation (VNS) technology firm Hoolest Performance Technologies was modified and characterized. Voltage feedback and current feedback systems were designed in order to improve output voltage and current regulation. A wireless communication system was implemented onboard the newly designed waveform generator in order to improve user experience and allow the system to be controlled remotely. Finally, a custom printed circuit board was designed according to the established circuit schematics for the above components, and the layout was miniaturized to a total board footprint area of 1.5 square inches. The completed device was characterized according to several figures of merit including current consumption, voltage and current regulation, and short-circuit behavior.
ContributorsPatterson, John Michael (Author) / Kozicki, Michael (Thesis director) / Mian, Sami (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133159-Thumbnail Image.png
Description
Our lives are documented and facilitated by the internet. Given that an increasing proportion of time is being spent online, search and browsing history offers a unique frame of reference to conduct a qualitative study since it contains individual goals, day-to-day experiences, illicit thoughts, and questions, all while capturing sentiments

Our lives are documented and facilitated by the internet. Given that an increasing proportion of time is being spent online, search and browsing history offers a unique frame of reference to conduct a qualitative study since it contains individual goals, day-to-day experiences, illicit thoughts, and questions, all while capturing sentiments rather than statistics. Seeing this recorded daily activity mapped out over the course of several years would hopefully provide a startling reminder of how life can be accurately and simply described as a series of constantly evolving interests and intentions, as well as give a sense of how exhaustively massive internet companies collect private information online. The search engine giant Google offers its users the transparency and freedom to export and download an archive of their web activity through a service known as Google Takeout. We propose using this service to empower ordinary individuals with Google accounts by developing a comprehensive and qualitative approach to understanding and gaining insights about their personal behavior online. In this paper, we first define and analyze the need for such a product. Then we conduct a variety of intent and interest-sensitive computational analysis methods on a sample browser history to explore and contextualize emergent trends, as a proof of concept. Finally, we create a blueprint for building an interactive application which uses our approach to generate dynamic dashboards and unique user profiles from search and browsing data.
ContributorsLi, Jason (Author) / Sopha, Matthew (Thesis director) / Shutters, Shade (Committee member) / Department of Information Systems (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134797-Thumbnail Image.png
Description
With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to

With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to inexpensive and not efficient. This leaves a low cost niche into the market of a virtual office assistant or manager to display messages and to help direct people in obtaining contact information. The development of a low cost solution revolves around the software needed to solve the various problems an accessible and user friendly Virtual Interface in which the owner of the Virtual Office Manager/Assistant can communicate to colleagues who are at standby outside of the owner's office and vice versa. This interface will be allowing the owner to describe the status pertaining to their absence or any other message sent to the interface. For example, the status of the owner's work commute can be described with a simple "Running Late" phrase or a message like "Busy come back in 10 minutes". In addition, any individual with an interest to these entries will have the opportunity to respond back because the device will provide contact information. When idle, the device will show supplemental information such as the owner's calendar and name. The scope of this will be the development and testing of solutions to achieve these goals.
ContributorsOffenberger, Spencer Eliot (Author) / Kozicki, Michael (Thesis director) / Goryll, Michael (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137646-Thumbnail Image.png
Description
The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The

The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The first three months were spent researching and selecting suitable IC's and external components (e.g. solar panel, batteries, etc.). Then, the next couple of months were spent ordering specific materials and equipment for the construction of our prototype. Finally, the last two months were used to build a working prototype, with a substantial amount of time used for perfecting our system's packaging and operation. This report will consist of a detailed discussion of our team's research, design activities, prototype implementation, final budget, and final schedule. Technical discussion of the concepts behind our design will assist with understanding the design activities and prototype implementation sections that will follow. Due to the generous funding of the group from the Barrett Honors College, our overall budget available for the project was $1600. Of that amount, only $334.51 was spent on the actual system components, with $829.42 being spent on the equipment and materials needed for the testing and construction of the prototype. As far as the schedule goes, we are essentially done with the project. The only tasks left to finish are a successful defense of the project at the oral presentation on Friday, 29 March 2013, followed by a successful demo on 26 April 2013.
ContributorsTroyer, Nicole L. (Co-author) / Shtayer, Idan (Co-author) / Guise, Chris (Co-author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Goodnick, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137699-Thumbnail Image.png
DescriptionExploring solar cell model alternatives using electrochemically deposited dendrites as a form of current collection to increase efficiency and top electrode transparency.
ContributorsKrawczyk, Joseph Robert (Author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Gonzalez Velo, Yago (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
147887-Thumbnail Image.png
Description

For my thesis/creative project, I created a prototype for a mental health app. Each section of the prototype has a purpose of instilling mindfulness and healthy habits that can promote and lead to sustainable mental health. Throughout the paper I explain my reasoning for starting this project, the science of

For my thesis/creative project, I created a prototype for a mental health app. Each section of the prototype has a purpose of instilling mindfulness and healthy habits that can promote and lead to sustainable mental health. Throughout the paper I explain my reasoning for starting this project, the science of mindfulness and how it can bring about positive mental and physical changes, and the design theory behind the prototype.

ContributorsZaja, Peter (Author) / Sopha, Matthew (Thesis director) / Arrfelt, Mathias (Committee member) / Department of Finance (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05