Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 50
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134708-Thumbnail Image.png
Description
Communication between the physical and digital world via software, embedded sensors and network connectivity is referred to by the term, the "Internet of Things" (IoT) [1]. The IoT transforms natural objects into "smart devices" to improve accuracy, reduce human intervention, and provide real-time data [1]. Smart weather stations that upload

Communication between the physical and digital world via software, embedded sensors and network connectivity is referred to by the term, the "Internet of Things" (IoT) [1]. The IoT transforms natural objects into "smart devices" to improve accuracy, reduce human intervention, and provide real-time data [1]. Smart weather stations that upload information, including temperature and humidity, to the Internet are already available. However, these products are often expensive and programmed only for single-purpose use. The LoRa Weather Station is a low cost, low power and low maintenance IoT solution that combines Microchip Technology's LoRa RN2903 module along with Mikroelektronika's Weather Click sensor. This report discusses how the LoRa Weather Station was created, primarily focusing on the LoRa gateway setup by a Raspberry Pi local web server. This project was completed by four electrical engineering students in the EEE 488 and 489 Senior Design courses at Arizona State University from Fall 2016 to Spring 2017. Total expenses for the project were $717.84, including the LoRa gateway which amounted to $104 (see Appendix C for the Bill of Materials).
ContributorsLeon, Miranda Cristina (Author) / Kozicki, Michael (Thesis director) / Balaban, Mehmet (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132912-Thumbnail Image.png
Description
In this project, an existing waveform generator designed by the vagus nerve stimulation (VNS) technology firm Hoolest Performance Technologies was modified and characterized. Voltage feedback and current feedback systems were designed in order to improve output voltage and current regulation. A wireless communication system was implemented onboard the newly designed

In this project, an existing waveform generator designed by the vagus nerve stimulation (VNS) technology firm Hoolest Performance Technologies was modified and characterized. Voltage feedback and current feedback systems were designed in order to improve output voltage and current regulation. A wireless communication system was implemented onboard the newly designed waveform generator in order to improve user experience and allow the system to be controlled remotely. Finally, a custom printed circuit board was designed according to the established circuit schematics for the above components, and the layout was miniaturized to a total board footprint area of 1.5 square inches. The completed device was characterized according to several figures of merit including current consumption, voltage and current regulation, and short-circuit behavior.
ContributorsPatterson, John Michael (Author) / Kozicki, Michael (Thesis director) / Mian, Sami (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133988-Thumbnail Image.png
Description
The National Basketball Association is the world's most recognized professional basketball league. Athletes such as Kobe Bryant and Lebron James have transcended from being high school standouts to global icons, but their careers might not have panned out the same way if they weren't allowed to declare for the draft

The National Basketball Association is the world's most recognized professional basketball league. Athletes such as Kobe Bryant and Lebron James have transcended from being high school standouts to global icons, but their careers might not have panned out the same way if they weren't allowed to declare for the draft immediately upon graduating high school. In 2005, the NBA and the NBA Players Association agreed to implement an age limit for athletes declaring for the NBA Draft. Although this was supposed to reduce the quantity of younger players declaring for the draft, the rule has been ineffective as the average age of lottery picks, also known as the first 14 picks of the draft, has decreased since the rule's implementation. Adam Silver, the current commissioner of the NBA, has been vocal about potentially raising the minimum draft-eligible age once more because of NBA team executives calling recent draft picks unfit for the NBA. The purpose of this research is to examine if lottery picks are indeed "NBA ready" upon being drafted, and if there is a correlation between the age at which they are drafted, the pick at which they were selected, the length of their career, and their career success. Various statistical analysis techniques are utilized, such as the calculation of R-squared values and correlation coefficients, and the usage of t-tests and multiple regressions. Box score statistics such as minutes per game, points per game, rebounds, and assists as well as advanced metrics such as player efficiency rating, win shares, box plus/minus, and value over replacement player were the focal point of this study. Players drafted with lottery selections from the 1985-2016 drafts had their career statistics compiled and examined for this analysis in order to adequately conduct the regressions. The results indicate that although lottery picks are having a decreasing immediate impact upon being drafted, the younger an athlete is drafted, the more long-term success they can expect to achieve in the NBA.
ContributorsKender, Mitchell Edward (Author) / McIntosh, Daniel (Thesis director) / Eaton, John (Committee member) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134797-Thumbnail Image.png
Description
With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to

With the progression of different industries moving away from employing secretaries for business professionals and professors, there exists a void in the area of personal assistance. This problem has existing solutions readily available to replace this service, i.e. secretary or personal assistant, tend to range from expensive and useful to inexpensive and not efficient. This leaves a low cost niche into the market of a virtual office assistant or manager to display messages and to help direct people in obtaining contact information. The development of a low cost solution revolves around the software needed to solve the various problems an accessible and user friendly Virtual Interface in which the owner of the Virtual Office Manager/Assistant can communicate to colleagues who are at standby outside of the owner's office and vice versa. This interface will be allowing the owner to describe the status pertaining to their absence or any other message sent to the interface. For example, the status of the owner's work commute can be described with a simple "Running Late" phrase or a message like "Busy come back in 10 minutes". In addition, any individual with an interest to these entries will have the opportunity to respond back because the device will provide contact information. When idle, the device will show supplemental information such as the owner's calendar and name. The scope of this will be the development and testing of solutions to achieve these goals.
ContributorsOffenberger, Spencer Eliot (Author) / Kozicki, Michael (Thesis director) / Goryll, Michael (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137646-Thumbnail Image.png
Description
The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The

The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The first three months were spent researching and selecting suitable IC's and external components (e.g. solar panel, batteries, etc.). Then, the next couple of months were spent ordering specific materials and equipment for the construction of our prototype. Finally, the last two months were used to build a working prototype, with a substantial amount of time used for perfecting our system's packaging and operation. This report will consist of a detailed discussion of our team's research, design activities, prototype implementation, final budget, and final schedule. Technical discussion of the concepts behind our design will assist with understanding the design activities and prototype implementation sections that will follow. Due to the generous funding of the group from the Barrett Honors College, our overall budget available for the project was $1600. Of that amount, only $334.51 was spent on the actual system components, with $829.42 being spent on the equipment and materials needed for the testing and construction of the prototype. As far as the schedule goes, we are essentially done with the project. The only tasks left to finish are a successful defense of the project at the oral presentation on Friday, 29 March 2013, followed by a successful demo on 26 April 2013.
ContributorsTroyer, Nicole L. (Co-author) / Shtayer, Idan (Co-author) / Guise, Chris (Co-author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Goodnick, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137699-Thumbnail Image.png
DescriptionExploring solar cell model alternatives using electrochemically deposited dendrites as a form of current collection to increase efficiency and top electrode transparency.
ContributorsKrawczyk, Joseph Robert (Author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Gonzalez Velo, Yago (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
147878-Thumbnail Image.png
Description

With as rapid a growth that Esports has had and its current introduction to the public mainstream, there is yet to be sufficient studies and research compiled to fully develop the profile of an Esport consumer. While companies such as Neilson and others have begun scratching the surface of the

With as rapid a growth that Esports has had and its current introduction to the public mainstream, there is yet to be sufficient studies and research compiled to fully develop the profile of an Esport consumer. While companies such as Neilson and others have begun scratching the surface of the Esport community, there is much that is relatively unknown. Consumer behavior patterns of traditional sports has been defined for years, however as the billion dollar a year industry that Esports is, Esport consumer behavior is still taking shape. This thesis will attempt to build upon previous studies conducted by former Arizona State University students to continue to define the Esport consumer. Through quantitative research conducted via an online survey consisting of demographic, behavioral, and psychographic questions, the stereotype of an Esport consumer will be dissolved to reveal their true nature. This study will prove to be an iteration among the previous research by -<br/>• Developing a functional segmentation of Esport consumers, which will allow for marketers within the industry to better understand their audience in their attempts to persuade/incentivize<br/>• Understanding and dissecting the scale of influence that content creators (those who play Esports for the purpose of entertaining through various platforms) and competitive Esport athletes have on certain segmentations of consumers<br/>• Discovering the impact the COVID-19 pandemic has had on certain segmentations in regards to their time spent playing themselves<br/><br/> After compiling results from this questionnaire, marketers that are both endemic and non-endemic brands seeking to partner within the Esports space will have a better understanding of their audience and how to connect with them.

ContributorsPearson, Samuel Tyler (Author) / McIntosh, Daniel (Thesis director) / Eaton, John (Committee member) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / Department of Management and Entrepreneurship (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148445-Thumbnail Image.png
Description

This is a test plan document for Team Aegis' capstone project that has the goal of mitigating single event upsets in NAND flash memory caused by space radiation.

ContributorsForman, Oliver Ethan (Co-author) / Smith, Aiden (Co-author) / Salls, Demetra (Co-author) / Kozicki, Michael (Thesis director) / Hodge, Chris (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05