Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 34
133370-Thumbnail Image.png
Description
The focus of human decomposition studies has traditionally been on how external factors affect the decomposition of a body. There is much less literature on how the decomposition of a human cadaver affects its local ecosystem. This study attempts to address the knowledge gap in current literature regarding how the

The focus of human decomposition studies has traditionally been on how external factors affect the decomposition of a body. There is much less literature on how the decomposition of a human cadaver affects its local ecosystem. This study attempts to address the knowledge gap in current literature regarding how the decomposition of human cadavers affects the bioavailability of essential plant nutrients (P, K, Ca, Fe, C and N) as well as toxins (As and Pb) in soil. By studying the bioavailability of plant nutrients, especially nitrogen, and toxins, this research hopes to inform new technologies and techniques for locating clandestine gravesites. The objectives of this study were twofold: 1) determine whether soils exposed to cadaveric decomposition can be visually distinguished from one another via macroscopic and microscopic observation and 2) observe general changes in nutrient and toxic element bioavailability and changes in carbon and nitrogen isotope ratios over time as well as spatially across a body. Visual analyses of soil samples, both macro- and microscopically did not show potential in distinguishing soil exposed to cadaver decomposition from unexposed soil. Relative bioavailability as well as overall bioavailable concentrations of both plant nutrients and toxins were highly elevated after 12 months. Toxins, such as As and Pb, tended to have greater bioavailable concentrations at the near-torso positions, though no consistent spatial trends between nutrient bioavailable concentrations were observed between the three individuals. Nitrogen concentrations and nitrogen isotope (δ15N) ratios show strong potential as markers of clandestine graves throughout the study period. While this research demonstrates further need to uncover what factors influence bioavailability of elements in gravesoil, it shows that the bioavailability of plant nutrients and toxins as well as δ15N ratios are greatly affected by cadaver decomposition, and emerging technologies in gravesite detection based on plant or soil changes have a solid foundation.
ContributorsAnderson, Sara Rae (Author) / Kobojek, Kimberly (Thesis director) / Gordon, Gwyneth (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131520-Thumbnail Image.png
Description
A lab protocol was created in order to introduce arson evidence analysis to students. The procedures dictate a thorough introduction from evidence handling procedures to analysis of common accelerant mass spectrum. The objectives of the lab protocol included classifying and describing various pieces of arson evidence and common accelerants as

A lab protocol was created in order to introduce arson evidence analysis to students. The procedures dictate a thorough introduction from evidence handling procedures to analysis of common accelerant mass spectrum. The objectives of the lab protocol included classifying and describing various pieces of arson evidence and common accelerants as well as synthesizing information about accelerant composition to interpret GC-MS data output. This would allow the student to experience first-hand what the subsection of arson analysis has to offer in the field of forensic science which could help the student decide on more specialties to study later on. I was unable to run the lab protocol in a laboratory setting, therefore in the future I want to use the lab protocol and receive feedback in order to improve the protocol so the student is receiving the best possible learning outcomes. The experience of creating a lab protocol in forensic science gave myself a greater understanding of what goes on behind an academic learning procedure and more insight on arson evidence analysis.
Created2020-05
135657-Thumbnail Image.png
Description
Bloodstain pattern analysis can provide telling evidence from a crime scene based on the clues left in the blood, but the field itself is highly problematic since the evidence extracted is dependent upon the interpretation of the analyst. Although some aspects of this type of analysis have been scientifically supported,

Bloodstain pattern analysis can provide telling evidence from a crime scene based on the clues left in the blood, but the field itself is highly problematic since the evidence extracted is dependent upon the interpretation of the analyst. Although some aspects of this type of analysis have been scientifically supported, most are not seen as positively accurate. Since certainty is the basis for acceptance of courtroom testimony, it is important that these unsettled aspects become more understood. This experiment examines the diameter of a weapon and how it affects its cast-off pattern. Weapons with four different diameters were used to generate 5 sample patterns under controlled conditions from each weapon diameter for a total of 20 patterns consisting of 3,367 droplets. The length and width of the pattern, the total number of droplets in the pattern, and the percentage of each droplet type (classified into low-velocity, medium-velocity, and high-velocity droplets) were recorded, averaged, and compared to each other individually using a t-test difference of two means assuming unequal variances. The results reveal that a higher percentage of droplets greater than 4 mm may indicate the use of a weapon with a wider diameter. The data also shows differences between the weapons that may be related to other factors besides the diameter of the weapon such as surface area or the curvature of the weapon. Still, more testing must be conducted to support these theories.
ContributorsBetz, Alexandra Marie (Author) / Kobojek, Kimberly (Thesis director) / Jacobson, David (Committee member) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136494-Thumbnail Image.png
Description
The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be

The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be able to withstand these harsh conditions due the incorporation of a resilient impermeable polymer layer that will be cast above the lower hydrophilic layer. Nanoparticles called zeolites will act as a water selective pathway through this impermeable layer and allow water to flow through the membrane. This membrane will be made using a variety of methods and polymers to determine both the cheapest and most effective way of creating this chemical resistant membrane. If this research is successful, many more water sources can be tapped since the membranes will be able to withstand hard conditions. This document is primarily focused on our progress on the development of a highly permeable polymer-zeolite film that makes up the bottom layer of the membrane. Multiple types of casting methods were investigated and it was determined that spin coating at 4000 rpm was the most effective. Based on a literature review, we selected silicalite-1 zeolites as the water-selective nanoparticle component dispersed in a casting solution of polyacrylonitrile in N-methylpyrrolidinone to comprise this hydrophilic layer. We varied the casting conditions of several simple solution-casting methods to produce thin films on the porous substrate with optimal film properties for our membrane design. We then cast this solution on other types of support materials that are more flexible and inexpensive to determine which combination resulted in the thinnest and most permeable film.
ContributorsHerrera, Sofia Carolina (Author) / Lind, Mary Laura (Thesis director) / Khosravi, Afsaneh (Committee member) / Hestekin, Jamie (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
Description
The scarcity of fresh water worldwide has necessitated improved technology for desalinating sea water. Reverse osmosis membranes are currently limited by their inclination for fouling, in which a layer forms on the surface of the membrane and impedes water flux. This yields shortened membrane lifespan and increased energy costs. Current

The scarcity of fresh water worldwide has necessitated improved technology for desalinating sea water. Reverse osmosis membranes are currently limited by their inclination for fouling, in which a layer forms on the surface of the membrane and impedes water flux. This yields shortened membrane lifespan and increased energy costs. Current technology uses interfacially polymerized polyamide thin film composite membranes, which form nodules, leaves, and other structures that lead to rough film surfaces and may contribute to fouling propensity. In this study, polyamide latex was designed in order to cast a smoother membrane with comparable performance. Polyamide latex particles were formed using a modified procedure based on Lind et. al [10] and characterized for sphericity using scanning electromagnetic microscopy (SEM).
ContributorsMccloskey, Cailen Marie (Author) / Lind, Mary Laura (Thesis director) / Jamieson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
133713-Thumbnail Image.png
Description
Marine conservation faces the unique challenge of trying to assess and protect species, like sharks, that have long migration tracks and are often targeted by fishing vessels in open and international waters. Over the last two decades, several large predatory shark populations have been greatly depleted despite local and international

Marine conservation faces the unique challenge of trying to assess and protect species, like sharks, that have long migration tracks and are often targeted by fishing vessels in open and international waters. Over the last two decades, several large predatory shark populations have been greatly depleted despite local and international organizations designed to help regulate and prevent predator removal to avoid disturbing the food web those sharks balance (Myers, Baum, Shepherd, Powers, & Peterson, 2007). Forensic science is a powerful tool that could give shark conservation efforts an edge on identifying shark species currently being targeted by unsustainable fisheries in international waters. Allowing offenders who break international conservation laws to be prosecuted for their crimes. Unfortunately, this unique and powerful tool has not been given the opportunity to be utilized as it should be. An overview of national and international agencies, organizations, and laws disclosed a strong foundation for wildlife conservation. However, current international organizations and laws that govern international waters leave much to be desired in regards to protecting shark species that are threatened due to being popular targets for fishing vessels. This paper examines the level of forensic science involvement in shark conservation efforts through a literature review, revealing a severe lack of real-life application of forensic science to marine conservation cases. Current issues that marine wildlife forensic science encounters while attempting to increase forensic capability. And finally, presenting proposals for the future, and new challenges, which aim to strengthen the relationship between forensic science and marine conservation.
ContributorsParker, Jamie Caitlin (Author) / Kobojek, Kimberly (Thesis director) / Polidoro, Beth (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133871-Thumbnail Image.png
Description
As human beings we go through the world interpreting – seeing a situation, gathering context, and making a decision on the meaning of the thing we just experienced. The philosopher Martin Heidegger calls this way of being hermeneutics – a practice of interpretation. This method of approach does not ignore

As human beings we go through the world interpreting – seeing a situation, gathering context, and making a decision on the meaning of the thing we just experienced. The philosopher Martin Heidegger calls this way of being hermeneutics – a practice of interpretation. This method of approach does not ignore a person’s bias, instead bias is highlighted, understood, and possibly even overcome. In the following pages the basic definition and process of hermeneutics will be discussed. Leading into the difference between calculative and meditative thought – scientific and philosophical – in order to later discuss the possibility and need to merge the two in the field of Forensic Science. Forensic Scientist uses hermeneutic thought by way of merging calculative and meditative thinking. In order to support this claim artistic renderings of ‘the pieces of an unknowable whole’ were created to literally illustrate this truth.
Forensic science is tasked with using calculative thinking with scientifically accepted methods of measurement and detection as well as the meditative task of applying their data to messy, real-world events. In order to support my supposition of forensic scientists being hermeneutical workers, three paintings were created. The three paintings can be considered a tryptic of sorts due to the context in which they are presented: forensic science. They each tell a story that is weaved within each other – spatter indicating violence long past, the empty void of a body gone, and the cold decomposition of a victim found. It is the forensic scientist that must interpret each piece separately and is tasked with finding how and why they are put together. The hermeneutical work of the forensic scientist interpreting a crime scene uses the same methods as one who interprets text. A forensic scientist opens possibilities of meaning in the same way that Martin Heidegger’s hermeneutic circle does. There is interplay between the interpreter (the forensic scientist) and the text (the crime scene), questions are formed (what happened here?) and responses are made (evidence found at the scene). This question and response outlook is what make the forensic scientist a hermeneutic thinker.
ContributorsCraig, Catherine Anne (Author) / Kobojek, Kimberly (Thesis director) / Watrous, Lisa (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137232-Thumbnail Image.png
Description
The effects that forensic-themed programs such as CSI: Crime Scene Investigation has on the public's understanding and expectations of the criminal justice system has been a main focus of study in recent years. This phenomenon was coined by the media and termed the "CSI Effect." This study aimed to research

The effects that forensic-themed programs such as CSI: Crime Scene Investigation has on the public's understanding and expectations of the criminal justice system has been a main focus of study in recent years. This phenomenon was coined by the media and termed the "CSI Effect." This study aimed to research the correlations between age, gender, and program-watching habits on potential juries' evidence expectations in court. To do so, 70 people were surveyed and asked a series of demographic questions, as well as questions about how often they watch forensic-themed shows and their experience with the criminal justice system. They were given a mock crime scene scenario and asked about their scientific and non-scientific evidence expectations in this particular case. The most notable results showed that a longer exposure time to forensic-themed programs correlated to high evidence expectations. However, how often viewers watch forensic-themed programs did not seem to affect their evidence expectations. It was concluded that the higher evidence expectations by modern jurors may be due to a combination of the "CSI Effect" and the newly hypothesized "Tech Effect," instead of just being the consequence of the watching too much forensic-themed television.
ContributorsJones, Kristin Taylor (Author) / Kobojek, Kimberly (Thesis director) / Lafond, Sue (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2014-05
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05