Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 48
133348-Thumbnail Image.png
Description
The inception of the human-powered water pump began during my trip to Maasailand in Kenya over the Summer of 2017. Being one of the few Broadening the Reach of Engineering through Community Engagement (BRECE) Scholars at Arizona State University, I was given the opportunity to join Prescott College (PC) on

The inception of the human-powered water pump began during my trip to Maasailand in Kenya over the Summer of 2017. Being one of the few Broadening the Reach of Engineering through Community Engagement (BRECE) Scholars at Arizona State University, I was given the opportunity to join Prescott College (PC) on their annual trip to the Maasai Education, Research, and Conservation (MERC) Institute in rural Kenya. The ASU BRECE scholars that choose to travel were asked to collaborate with the local Maasai community to help develop functional and sustainable engineering solutions to problems identified alongside community members using rudimentary technology and tools that were available in this resource-constrained setting. This initiative evolved into multiple projects from the installation of GravityLights (a local invention that powers LEDs with falling sandbags), the construction/installation of smokeless stoves, and development of a much-needed solution to move water from the rainwater collection tanks around camp to other locations. This last project listed was prototyped once in camp, and this report details subsequent iterations of this human-powered pump.
ContributorsMiller, Miles Edward (Author) / Henderson, Mark (Thesis director) / Abbas, James (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Each year, 30,000 patients obtain transplants. To prevent graft rejection, immunosuppressants such as tacrolimus are prescribed. Due to tacrolimus's narrow therapeutic range, a dose that is too low places patients at risk for transplant rejection, but too high of a dose leads to kidney failure. The de facto method for

Each year, 30,000 patients obtain transplants. To prevent graft rejection, immunosuppressants such as tacrolimus are prescribed. Due to tacrolimus's narrow therapeutic range, a dose that is too low places patients at risk for transplant rejection, but too high of a dose leads to kidney failure. The de facto method for monitoring of transplant patient health is bimonthly blood draws, which are cumbersome, painful, and difficult to translate into urgently needed dosage changes in a timely manner. To improve long-term transplant survival rates, we propose a finger-prick sensor that will provide patients and healthcare providers with a measurement of tacrolimus, immune health (through IL-12), and kidney damage (through cystatin C) levels 100 times more frequently than the status quo. Additionally, patient quality of life will be improved due to reduction in time and pain associated with blood draws. Optimal binding frequencies for each marker were found. However, due to limitations with EIS, the integration of the detection of the three markers into one multimarker sensing platform has not yet been realized. To this end, impedance-time tests were run on each marker along with different antibodies, and optimal times of each marker were determined to be 17s, 6s, and 2s, for tacrolimus, cystatin c, and IL-12, respectively (n=6). The integration of impedance-time analysis with traditional EIS methodologies has the potential to enable multi-marker analysis by analyzing binding kinetics on a single electrode with respect to time. Thus, our results provide unique insight into possibilities to improve and facilitate detection of multiple markers not only for the sensor for solid organ transplant patients, but for the monitoring of patients with disease that also entail the observation of multiple markers. Furthermore, the use of impedance-time testing also provides the ability for another way to optimize accuracy/precision of marker detection because it specifies a particular time, in addition to a particular optimal binding frequency, at which to measure concentration.
ContributorsDoshi, Meera Kshitij (Author) / LaBelle, Jeffrey (Thesis director) / Steidley, Eric (Committee member) / Harrington Bioengineering Program (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135383-Thumbnail Image.png
Description
Billions of people around the world deal with the struggles of poverty every day. Consequently, a number of others have committed themselves to help alleviate poverty. Many various methods are used, and a current consensus on the best method to alleviate poverty is lacking. Generally the methods used or researched

Billions of people around the world deal with the struggles of poverty every day. Consequently, a number of others have committed themselves to help alleviate poverty. Many various methods are used, and a current consensus on the best method to alleviate poverty is lacking. Generally the methods used or researched exist somewhere on the spectrum between top-down and bottom-up approaches to fighting poverty. This paper analyzes a specific method proposed by C.K. Prahalad known as the Bottom of the Pyramid solution. The premise of the method is that large multinational corporations should utilize the large conglomerate of money that exists amongst poor people \u2014 created due to the sheer number of poor people \u2014 for business ventures. Concurrently, the poor people can benefit from the company's entrance. This method has received acclaim theoretically, but still needs empirical evidence to prove its practicality. This paper compares this approach with other approaches, considers international development data trends, and analyzes case studies of actual attempts that provide insight into the approach's potential for success. The market of poor people at the bottom of the pyramid is extremely segmented which makes it very difficult for large companies to financially prosper. It is even harder to establish mutual benefit between the large corporation and the poor. It has been found that although aspects of the bottom of the pyramid method hold merit, higher potential for alleviating poverty exists when small companies venture into this space rather than large multinational corporations. Small companies can conform to a single community and niche economy to prosper \u2014 a flexibility that large companies lack. Moving forward, analyzing the actual attempts provides the best and only empirical insights; hence, it will be important to consider more approaches into developing economies as they materialize.
ContributorsSanchez, Derek Javier (Author) / Henderson, Mark (Thesis director) / Shunk, Dan (Committee member) / Industrial, Systems (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135392-Thumbnail Image.png
Description
In recent history, the world has been inspired to respond to the challenges faced by communities with ‘help’. This help has been administered with moderate success through community engagement strategies traditionally centered on social services provided through non-profit agencies. Social entrepreneurship has emerged in response to the lack of progress

In recent history, the world has been inspired to respond to the challenges faced by communities with ‘help’. This help has been administered with moderate success through community engagement strategies traditionally centered on social services provided through non-profit agencies. Social entrepreneurship has emerged in response to the lack of progress made in solving local and global issues with new innovations that have the potential to change the status quo and eliminate the problems for future generations. In social entrepreneurship, concerned individuals saw an opportunity to truly change the world. Higher education leaders have embraced social entrepreneurship, positioning university students as a driving force behind ideating creative and innovative solutions that can be implemented in communities to overcome a vast array of challenges from poverty to environmental sustainability. Despite the efforts of university staff and faculty, many student changemakers struggle to successfully implement their ideas and measure their impact. Factors such as how well the student understands the issue and community in addition to the extent to which the student is experienced in ideation, creative-problem solving, and implementation of projects contribute to the success or failure of a student social effort. Inspired by their experiences serving as director of Changemaker Central, the authors sought to understand the process of preparing students to be agents of change in the community. Having observed the variance in success among aspiring changemakers at Arizona State University (ASU), the researchers studied how to best support students in preparation for a high-impact career. The research analyzed students’ experiences in two of ASU’s social change programs, Changemaker Challenge (CC) and University Service-Learning (USL) and found a need for more cohesion between two programs and their represented methodologies in addition to a need for in-depth analysis on the student journey.
ContributorsMicevic, Vid (Co-author) / Fitzgerald, Kaitlyn (Co-author) / Henderson, Mark (Thesis director) / Smith, Jacqueline (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136669-Thumbnail Image.png
Description
"Seventy five percent of the world's poor live in rural areas of developing countries, where most people's livelihoods rely directly on agriculture." (USAid, 2014) Reduced levels of crop production and the accompanying problems of malnourishment exist all over the world. In rural Peru, for example, 11 percent of the population

"Seventy five percent of the world's poor live in rural areas of developing countries, where most people's livelihoods rely directly on agriculture." (USAid, 2014) Reduced levels of crop production and the accompanying problems of malnourishment exist all over the world. In rural Peru, for example, 11 percent of the population is malnourished. (Global Healthfacts.org, 2012) Since the success in agriculture relies importantly on the fertility of the soil, it is imperative that any efforts at reversing this trend be primarily directed at improving the existing soils. This, in turn, will increase crop yields, and if done properly, will also conserve natural resources and maximize profits for farmers. In order to improve the lives of those at the bottom of the pyramid through agriculture, certain tools and knowledge must be provided in order to empower such persons to help themselves. An ancient method of soil improvement, known as Terra Preta do Indio (Indian dark earth), was discovered by Anthropologists in the 1800's. These dark, carbon-rich, soils are notable for their high fertility, high amounts of plant available nutrients, and their high moisture retention rates. The key to their long-lasting fertility and durability is the presence of high levels of biochar, a highly stable organic carbon \u2014 produced when organic matter (crop residues, food waste, manure, etc.) is burned at low temperatures in the absence of oxygen. Research has shown that when charcoal (biochar) and fertilizers are combined, it can yield as much as 880 percent more than when fertilizers are used by themselves. (Steiner, University of Bayreuth, 2004)
ContributorsStefanik, Kathleen Ann (Author) / Henderson, Mark (Thesis director) / Johnson, Nathan (Committee member) / Barrett, The Honors College (Contributor) / Human Systems Engineering (Contributor)
Created2014-12
136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
Description
I. Executive Summary Projectors are used in more and more live and corporate events and theatrical productions. In these environments, they are subject to a myriad of conditions. These can include extreme temperatures, atmospheric effects and contaminates, shipping and rough handling, and power issues. The goal is to find ways

I. Executive Summary Projectors are used in more and more live and corporate events and theatrical productions. In these environments, they are subject to a myriad of conditions. These can include extreme temperatures, atmospheric effects and contaminates, shipping and rough handling, and power issues. The goal is to find ways to extend the reliable and economical lifespan of these machines increasing companies ROI and decreasing environmental damage from more frequent production, repair and disposal. The first area studied was the effect removing the covers has on the projector performance. This is important knowledge for both the research protocols followed in this research and in normal use during maintenance and repair. Testing demonstrated that the removal of covers on small consumer projectors has a profound impact on internal temperatures and can even cause overheating due to the covers being used as air ducting. The main focus of this project was finding effective pre-filters for use around haze, fog and other airborne contaminates. This was successful with two material being demonstrated to be cost effective, filter far superior to factory filters alone, and produce acceptable impacts on projector cooling in several models and types of projector. These filters cost typically less than $1 per filter and reduce the ingress of contaminates by 60-80%. Additionally the effects of improper shutdown versus the manufacturers specified shutdown process were tested. It was determined that the projectors where power was unplugged or turned off had components exceed both operating temperatures and temperatures during the normal shutdown. This shows that following the correct shutdown process keeps components cooler leading to a longer component life and therefore longer projector life and decreased repairs.
ContributorsBooth, Kelsey (Author) / Henderson, Mark (Thesis director) / Pinholster, Jacob (Committee member) / Gaddy, Davin (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136597-Thumbnail Image.png
Description
In order to address infant respiratory distress syndrome, this study attempts to develop and characterize a textile strain gauge fabricated with stainless steel, wool, elastic, and tencel. Faire Isle knitted patterns are investigated in order to create channels of conductivity for a linear sensor. The effect linear yarn density on

In order to address infant respiratory distress syndrome, this study attempts to develop and characterize a textile strain gauge fabricated with stainless steel, wool, elastic, and tencel. Faire Isle knitted patterns are investigated in order to create channels of conductivity for a linear sensor. The effect linear yarn density on linearity and sensitivity and hysteresis of the sensors is also investigated for sensor optimization. It was found that there was a significant difference between the patterned and non-patterned samples. The patterned sensors were found to have a lower range of resistance than the non-patterned sensors and a smaller average standard of deviation between measurements. The 7 tension, lower linear yarn density, elastic patterned sample was the only sample to not exhibit hysteresis after three trials as well as have a linear range from 11.5cm to 13cm where the sensor behaves in accordance with a linear transfer function.
ContributorsBrown, Shannon (Co-author) / Irimata, Lisa (Co-author) / LaBelle, Jeffrey (Thesis director) / Hanson, Erika (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135820-Thumbnail Image.png
Description
This paper proposes a new framework design for the lightweight transradial prosthesis. This device was designed to be light-weight, easily manufactured, inexpensive, and to have a high interstitial free space volume for electrical components and customization. Press-fit junctions between fins allow for little or no adhesives, allowing for easily replaceable

This paper proposes a new framework design for the lightweight transradial prosthesis. This device was designed to be light-weight, easily manufactured, inexpensive, and to have a high interstitial free space volume for electrical components and customization. Press-fit junctions between fins allow for little or no adhesives, allowing for easily replaceable parts. Designs were constructed out of chipboard and run through an assortment of tests to see if each design iterations met structural design specifications. There were four main design iterations tested: 4, 8, 12 fin designs, and a 4 fin design with additional angled fins for torsional support (4T). Compression, torsion, and 3-point bending tests were all performed on each cylindrical iteration. Basic tensile and material testing was done on chipboard to support results. The force applied to a human arm during a fall is approximately 500 lbf [13]. Compression tests yielded a strength of approximately 300 lbf for the cylindrical designs. ANOVAs and T-tests were performed to find significance in compressive strength between the design iterations with the varied number of fins (p<<0.05). The torsional strength of the human arm, without causing great strain or discomfort has a max value of approximately 15 Nm [14]. This matched the torsional values of the 4T. design [14]. The 4, 8, and 12 designs' torsional strengths were linear with values of approximately 4, 7, and 12 Nm respectively. The 3-point bending test yielded the flexural stress and strain values to find compressive strength in the convex direction as well as the displacement and deformation in each sample. The material chipboard was found to be variable with elastic modulus, Poisson's ratio, and tensile strength. Each experimental procedure was done as a proof of concept for future prosthesis design.
ContributorsMcbryan, Sarah Jane (Author) / LaBelle, Jeffrey (Thesis director) / Lathers, Steven (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05