Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 93
147979-Thumbnail Image.png
Description

Traumatic brain injury involves a primary mechanical injury that is followed by a secondary<br/>inflammatory cascade. The inflammatory cascade in the CNS releases cytokines which are<br/>associated with leukocytosis and a systemic immune response. Acute changes to peripheral<br/>immune cell populations post-TBI include a 4.5-fold increase of neutrophils 3 hours post-injury,<br/>and 2.7-fold or

Traumatic brain injury involves a primary mechanical injury that is followed by a secondary<br/>inflammatory cascade. The inflammatory cascade in the CNS releases cytokines which are<br/>associated with leukocytosis and a systemic immune response. Acute changes to peripheral<br/>immune cell populations post-TBI include a 4.5-fold increase of neutrophils 3 hours post-injury,<br/>and 2.7-fold or higher increase of monocytes 24 hours post-injury. Flow Cytometry is a<br/>technique that integrates fluidics, optics, and electronics to characterize cells based on their light<br/>scatter and antigen expression via monoclonal antibodies conjugated to fluorochromes. Flow<br/>cytometry is a valuable tool in cell characterization however the standard technique for data<br/>analysis, manual gating, is associated with inefficiency, subjectivity, and irreproducibility.<br/>Unsupervised analysis that uses algorithms packaged as plug-ins for flow cytometry analysis<br/>software has been discussed as a solution to the limits of manual gating and as an alternative<br/>method of data visualization and exploration. This investigation evaluated the use of tSNE<br/>(dimensionality reduction algorithm) and FlowSOM (population clustering algorithm)<br/>unsupervised flow cytometry analysis of immune cell population changes in female mice that<br/>have been exposed to a LPS-induced systemic inflammatory challenge, results were compared to<br/>those of manual gating. Flow cytometry data was obtained from blood samples taken prior to and<br/>24 hours after LPS injection. Unsupervised analysis was able to identify populations of<br/>neutrophils and pro-inflammatory/anti-inflammatory monocytes, it also identified several more<br/>populations however further inquiry with a more specific fluorescent panel would be required to<br/>establish the specificity and validity of these populations. Unsupervised analysis with tSNE and<br/>FlowSOM demonstrated the efficient and intuitive nature of the technique, however it also<br/>illustrated the importance of the investigator in preparing data and modulating plug-in settings.

ContributorsDudic, Ahmed (Author) / Stabenfeldt, Sarah (Thesis director) / Lifshitz, Jonathan (Committee member) / Rojas, Luisa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148068-Thumbnail Image.png
Description

Traumatic brain injury (TBI) is a widespread health issue that affects approximately 1.7 million lives per year. The effects of TBI go past the incident of primary injury, as chronic damage can follow for years and cause irreversible neurodegeneration. A potential strategy for repair that has been studied is cell

Traumatic brain injury (TBI) is a widespread health issue that affects approximately 1.7 million lives per year. The effects of TBI go past the incident of primary injury, as chronic damage can follow for years and cause irreversible neurodegeneration. A potential strategy for repair that has been studied is cell transplantation, as neural stem cells improve neurological function. While promising, neural stem cell transplantation presents challenges due to a relatively low survival rate post-implantation and issues with determining the optimal method of transplantation. Shear-thinning hydrogels are a type of hydrogel whose linkages break when under shear stress, exhibiting viscous flow, but reform and recover upon relaxation. Such properties allow them to be easily injected for minimally invasive delivery, while also shielding encapsulated cells from high shear forces, which would normally degrade the function and viability of such cells. As such, it is salient to research whether shear-thinning hydrogels are feasible candidates in neural cell transplantation applications for neuroregenerative medicine. In this honors thesis, shear-thinning hydrogels were formed through guest-host interactions of adamantane modified HA (guest ad-HA) and beta-cyclodextrin modified HA (host CD-HA). The purpose of the study was to characterize the injection force profile of different weight percentages of the HA shear-thinning hydrogel. The break force and average glide force were also compared between the differing weight percentages. By understanding the force exerted on the hydrogel when being injected, we could characterize how neural cells may respond to encapsulation and injection within HA shear-thinning hydrogels. We identified that 5% weight HA hydrogel required greater injection force than 4% weight HA hydrogel to be fully delivered. Such contexts are valuable, as this implies that higher weight percentage gels impart higher shear forces on encapsulated cells than lower weight gels. Further study is required to optimize our injection force system’s sensitivity and to investigate if cell encapsulation increases the force required for injection.

ContributorsZhang, Irene (Author) / Stabenfeldt, Sarah (Thesis director) / Holloway, Julianne (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135698-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a

Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a predictive in silco model using diffusion and autocrine/paracrine signaling specific to stromal cell derived factor-1α (SDF-1α) gradient formation after TBI and compare this model with in vivo experimental data. A COMSOL model using Fickian diffusion and autocrine/paracrine reaction terms was generated to predict the gradient formation observed in vivo at three physiologically relevant time points (1, 3, and 7 days). In vivo data was gathered and analyzed via immunohistochemistry and MATLAB. The spatial distribution of SDF-1α concentration in vivo more consistently demonstrated patterns similar to the in silico model dependent on both diffusion and autocrine/paracrine reaction terms rather than diffusion alone. The temporal distribution of these same results demonstrated degradation of SDF-1α at too rapid a rate, compared to the in vivo results. To account for differences in behavior observed in vivo, reaction terms and constants of 1st-order reaction rates must be modulated to better reflect the results observed in vivo. These results from both the in silico model and in vivo data support the hypothesis that SDF-1α gradient formation after TBI depends on more than diffusion alone. Future work will focus on improving the model with constants that are specific to SDF-1α as well as testing methods to better control the degradation of SDF-1α.
ContributorsFreeman, Sabrina Louise (Author) / Stabenfeldt, Sarah (Thesis director) / Caplan, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136253-Thumbnail Image.png
Description
The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin,

The endogenous response of neural stem cell/progenitor (NPSC) recruitment to the brain injury environment following a traumatic brain injury (TBI) is currently under heavy investigation. Mechanisms controlling NPSC proliferation and migration to the brain injury environment remain unclear; however, it is thought that the vascular extracellular matrix proteins (e.g. laminin, fibronectin, and vitronectin) and vascular endothelial growth factor (VEGF) play a role in mediating NPSC behavior through vasophillic interactions. This project attempts to uncover potential VEGF-ECM crosstalk in mediating migration and proliferation. To investigate migration, neurospheres were seeded on ECM-coated wells supplemented with VEGF and without VEGF, and neural outgrowth was measured at days 0, 1, 3, and 8 using differential interference contrast microscopy. Furthermore, single-cell NPSCs were seeded on ECM-coated Transwell membranes with VEGF supplemented media on one side and without VEGF to look at chemotactic migration. Migrated NPSCs were visualized with DAPI nuclear stain and imaged with an inverted fluorescent microscope. To investigate NPSC proliferation, NPSCs were seeded on ECM coated plates as in the radial migration assay and visualized with EdU on day 8. Total proliferation was measured by seeding NPSCs on ECM coated 96-well plates and incubating them with MTT on days 3 and 6. Proliferation was measured using a spectrophotometer at 630nm and 570nm wavelengths. It was found that VEGF-laminin crosstalk synergistically increased radial migration, but may not play a role in chemotactic migration. Understanding the mechanisms behind VEGF-laminin crosstalk in NPSC proliferation and migration may provide crucial information for the design of stem cell transplantation therapies in the future.
ContributorsMillar-Haskell, Catherine Susan (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
131347-Thumbnail Image.png
Description
The goal of this thesis was to create a theory of change for an annual Multicultural Arts Camp (MAC) that offers youth with trauma histories opportunities to cultivate protective factors associated with resilience. MAC is designed to promote four primary protective outcomes among its participants: (1) safety, (2) self-expression, (3)

The goal of this thesis was to create a theory of change for an annual Multicultural Arts Camp (MAC) that offers youth with trauma histories opportunities to cultivate protective factors associated with resilience. MAC is designed to promote four primary protective outcomes among its participants: (1) safety, (2) self-expression, (3) skill-building and (4) self-efficacy through exploration of various multicultural art forms and connecting with caring adults. The theory of change was informed by my observations during my experience as a MAC volunteer and my review of academic literature to better define and understand how various factors involved in the MAC program are linked to resilience processes. Arts programming can provide opportunities for youth who have experienced trauma to feel safe enough to engage in self-expression and build corresponding skills that promote feelings of self-efficacy. Building these protective factors thereby strengthens children’s capacity for resilience. Accordingly, the theory of change articulates program activities and processes that promote these outcomes among participating youth. Program directors may draw on the theory of change for strategic planning and evaluation efforts assessing the program’s processes and corresponding impact.
ContributorsJanss, Alena Lilia (Author) / Sechler, Casey (Thesis director) / Foster, Stacie (Committee member) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132526-Thumbnail Image.png
Description
In the United States, an estimated 2 million cases of traumatic brain injury (TBI) resulting in more than 50,000 deaths occur every year. TBI induces an immediate primary injury resulting in local or diffuse cell death in the brain. Then a secondary injury occurs through neuroinflammation from immune cells in

In the United States, an estimated 2 million cases of traumatic brain injury (TBI) resulting in more than 50,000 deaths occur every year. TBI induces an immediate primary injury resulting in local or diffuse cell death in the brain. Then a secondary injury occurs through neuroinflammation from immune cells in response to primary injury. Microglia, the resident immune cell of the central nervous system, play a critical role in neuroinflammation following TBI. Microglia make up 10% of all cells in the nervous system and are the fastest moving cells in the brain, scanning the entire parenchyma every several hours. Microglia have roles in both the healthy and injured brain. In the healthy brain, microglia can produce neuroprotective factors, clear cellular debris, and organize neurorestorative processes to recover from TBI. However, microglia mediated neuroinflammation during secondary injury produces pro-inflammatory and cytotoxic mediators contributing to neuronal dysfunction, inhibition of CNS repair, and cell death. Furthermore, neuroinflammation is a prominent feature in many neurodegenerative diseases such as Alzheimer’s, and Parkinson’s disease, of which include overactive microglia function. Microglia cell morphology, activation, and response to TBI is poorly understood. Currently, imaging microglia can only be performed while the animal is stationary and under anesthesia. The Miniscope technology allows for real-time visualization of microglia in awake behaving animals. The Miniscope is a miniature fluorescent microscope that can be implanted over a craniectomy to image microglia. Currently, the goals of Miniscope imaging are to improve image quality and develop time-lapse imaging capabilities. There were five main sub-projects that focused on these goals including surgical nose cone design, surgical holder design, improved GRIN lens setup, improved magnification through achromatic lenses, and time-lapse imaging hardware development. Completing these goals would allow for the visualization of microglia function in the healthy and injured brain, elucidating important immune functions that could provide new strategies for treating brain diseases.
ContributorsNelson, Andrew Frederick (Author) / Stabenfeldt, Sarah (Thesis director) / Lifshitz, Jonathan (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132413-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a major cause of disability, with approximately 1.7 million incidents reported annually. Following a TBI, patients are likely to sustain sensorimotor and cognitive impairments and are at an increased risk of developing neurodegenerative diseases later in life. Despite this, robust therapies that treat TBI neuropathology

Traumatic brain injury (TBI) is a major cause of disability, with approximately 1.7 million incidents reported annually. Following a TBI, patients are likely to sustain sensorimotor and cognitive impairments and are at an increased risk of developing neurodegenerative diseases later in life. Despite this, robust therapies that treat TBI neuropathology are not available in the clinic. One emerging therapeutic approach is to target epigenetic mediators that modulate a variety of molecular regulatory events acutely following injury. Specifically, previous studies demonstrated that histone deacetylase inhibitor (HDACi) administration following TBI reduced inflammation, enhanced functional outcomes, and was neuroprotective. Here, we evaluated a novel quisinostat-loaded PLA-PEG nanoparticle (QNP) therapy in treating TBI as modeled by a controlled cortical impact. We evaluated initial pharmacodynamics within the injured cortex via histone acetylation levels following QNP treatment. We observed that QNP administration acutely following injury increased histone acetylation specifically within the injury penumbra, as detected by Western blot analysis. Given this effect, we evaluated QNP therapeutic efficacy. We observed that QNP treatment dampened motor deficits as measured by increased rotarod latency to fall relative to blank nanoparticle- and saline-treated controls. Additionally, open field results show that QNP treatment altered locomotion following injury. These results suggest that HDACi therapies are a beneficial therapeutic strategy following neural injury and demonstrate the utility for nanoparticle formulations as a mode for HDACi delivery following TBI.
ContributorsMousa, Gergey (Author) / Stabenfeldt, Sarah (Thesis director) / Newbern, Jason (Committee member) / Sirianni, Rachael (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05