Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 73
136304-Thumbnail Image.png
Description
A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with the goal of establishing the state of knowledge and existing information gaps. Publications on IL toxicity were collected from the

A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with the goal of establishing the state of knowledge and existing information gaps. Publications on IL toxicity were collected from the SciFinder database and sorted by cation and model organism studied. Studies focusing on pharmacokinetics and drug development were excluded, as were structure-activity relationship methods of data collection. Total publishing activity was used as a measure to gauge research and industrial usage of ILs as well as the knowledge base of toxicology. Five of the most commonly studied IL cations were identified and used to establish a relationship between toxicity data and potential of commercial use: imidazolium, ammonium, phosphonium, pyridinium, and pyrrolidinium. Toxicology publications for all IL cations represented 1.2% ± 0.62% of the total publishing activity; compared with other industrial chemicals, these numbers indicate that there is still a paucity of studies on the adverse effects of this class of chemicals. In vitro models and marine bacteria were the most frequently studied biological systems, contributing 18% and 15%, respectively, to the total body of IL toxicity studies. Whole animal studies (n = 87) comprised 41% of IL toxicity studies, with a subset of in vivo mammalian models consisting of 8%. Human toxicology data were found to be limited to in vitro analyses, indicating substantial knowledge gaps. Risks from long-term and chronic low-level exposure to ILs have not been established yet for any model organisms, reemphasizing the need for filling crucial knowledge gaps concerning human health effects and the environmental safety of ILs. Adding to the existing knowledge of the molecular toxicity characteristics of ILs can help inform the design of greener, less toxic and more benign IL technologies.
ContributorsHeckenbach, Mary (Co-author) / Halden, Rolf (Co-author, Thesis director) / Jehn, Megan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137712-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated

Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated aquifer in San Diego. These series of treatability studies were also performed to prepare data and mature packed sediment columns for the deployment of the In Situ Microcosm Array (ISMA), a diagnostic device for determining optimal treatments for a contaminated aquifer, at this particular site. First, a control panel for the ISMA’s Injection Module (IM) was created in order to deliver nutrients to the columns. Then, a column treatability study was performed in order to produce columns with an established KB-1® consortium, so that all TCE in the column influent was converted to ethene by the time it had exited the column. Finally, a batch bottle treatability study was performed to determine KB-1®’s effectiveness at remediating both TCE and Cr(VI) from the San Diego ground-water samples. The results from the column study found that KB-1® was able to reduce TCE in mineral media. However, in the presence of site ground-water for the batch bottle study, KB-1® was only able to reduce Cr(VI) and no TCE dechlorination was observed. This result suggests that the dechlorinating culture cannot survive prolonged exposure to Cr(VI). Therefore, future work may involve repeating the batch bottle study with Cr(VI) removed from the groundwater prior to inoculation to determine if KB-1® is then able to dechlorinate TCE.
ContributorsDuong, Benjamin Taylor (Author) / Halden, Rolf (Thesis director) / Torres, Cesar (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Dance (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137727-Thumbnail Image.png
Description
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective,

Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.
ContributorsNorth, Emily Jean (Co-author) / Halden, Rolf (Co-author, Thesis director) / Mikhail, Chester (Committee member) / Hurlbut, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
148171-Thumbnail Image.png
Description

As the return to normality in the wake of the COVID-19 pandemic enters its early stages, the necessity for accurate, quick, and community-wide surveillance of SARS-CoV-2 has been emphasized. Wastewater-based epidemiology (WBE) has been used across the world as a tool for monitoring the pandemic, but studies of its efficacy

As the return to normality in the wake of the COVID-19 pandemic enters its early stages, the necessity for accurate, quick, and community-wide surveillance of SARS-CoV-2 has been emphasized. Wastewater-based epidemiology (WBE) has been used across the world as a tool for monitoring the pandemic, but studies of its efficacy in comparison to the best-known method for surveillance, randomly selected COVID-19 testing, has limited research. This study evaluated the trends and correlations present between SARS-CoV-2 in the effluent wastewater of a large university campus and random COVID-19 testing results published by the university. A moderately strong positive correlation was found between the random testing and WBE surveillance methods (r = 0.63), and this correlation was strengthened when accommodating for lost samples during the experiment (r = 0.74).

ContributorsWright, Jillian (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147952-Thumbnail Image.png
Description

An analysis of university flight emissions, carbon neutrality goals, and the global impact of university sanctioned flight.

ContributorsKoehler, Megan Anne (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166745-Thumbnail Image.png
Description

An autobiography on my 6 years at ASU as a design student, honors student, interdisciplinary worker, and a team player. Also, the InnovationSpace experience of working in a transdisciplinary team.

ContributorsKozicki, Jeannie (Author) / Hedges, Craig (Thesis director) / Reeves, Scott (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / The Design School (Contributor)
Created2022-05
Description

The Sonoran Desert in the Southwest region of the United States and the Northwest corner of Mexico is defined by low precipitation rates that are episodal, oscillating between years of higher yields than average and then below average levels. Water is essential for life and in the region, the lack

The Sonoran Desert in the Southwest region of the United States and the Northwest corner of Mexico is defined by low precipitation rates that are episodal, oscillating between years of higher yields than average and then below average levels. Water is essential for life and in the region, the lack of water proves an obstacle for people that must be faced to live and thrive there. Yet, millions of people live in this desert region and more people are moving currently. As current water resources are straining not only under increasing population but also with higher frequency and lengths of droughts in the region, water is becoming an important topic for future plans in the Sonoran Desert. However, a vast array of plants and animals have lived under these conditions by adapting to the low precipitation rates. By looking at the common flora and fauna of the region, humans may learn how to better live in the Sonoran Desert through biomimicry, the imitation of life. The natural design and processes of life in the Sonoran Desert can be studied to find ways to conserve, store and collect water for human consumption ensuring longevity within the region and beyond as water insecurity increases globally.

ContributorsGustin, Eden (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
ContributorsGustin, Eden (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
ContributorsGustin, Eden (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
Description

Phthalates are ubiquitous in the built environment and are used across various fields, despite known endocrine disruptive properties, and other associated health hazards, including abnormalities in reproductive health and development. I investigated the presence of phthalates in the built environment using the Health Product Declaration (HPD) repository to survey for

Phthalates are ubiquitous in the built environment and are used across various fields, despite known endocrine disruptive properties, and other associated health hazards, including abnormalities in reproductive health and development. I investigated the presence of phthalates in the built environment using the Health Product Declaration (HPD) repository to survey for products containing these chemicals, investigated the literature for possible health effects and alternatives to phthalates, and conducted a laboratoy-based feasibility study of urinary biomarkers associated with phthalates using wastewater-based epidemiology (WBE) on a US university campus at the building-scale. Of the 5,278 products in the HPD repository, 73 contained phthalates and were most commonly found in windows, doors, flooring, sealants, insulations, and furnishings. Alternative plasticizers (cardanol, epoxidized soybean oil, hydrogenated castor oil) usage were identified in 10 products from HPD repository. The two wastewater samples analyzed by liquid chromatography-tandem mass spectrometry (LC-MS-MS) showed that dimethyl phthalate (DMP) was detectable, as well as its human metabolite, monomethyl phthalate (MMP), observed at a concentration of 163-202 ng/L. These results indicate low human exposure from the building materials in the limited convenience sample investigated. Future studies of building scale wastewater-based epidemiology are recommended to investigate these and other phthalates commonly found in the built environment, including diisononyl phthalate (DINP) and diisononyl hexahydrophthalate (DINCH).

ContributorsGroves, Megan (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05