Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 41
134291-Thumbnail Image.png
Description
Orbiting space debris is an active issue that affects the capability of space launch for future satellites, probes, and space shuttles, and it will become a nearly insurmountable problem without action. Debris of varying sizes and speeds orbit the Earth at a range of heights above the atmosphere and need

Orbiting space debris is an active issue that affects the capability of space launch for future satellites, probes, and space shuttles, and it will become a nearly insurmountable problem without action. Debris of varying sizes and speeds orbit the Earth at a range of heights above the atmosphere and need to be removed to avoid damage to crucial equipment of active orbiting satellites including the International Space Station. Finding a feasible solution to space debris removal requires that several facets be covered to become a reality; these include being aware of the problem in magnitude and source. This literature assessment covers the magnitude of space debris in low-earth and geosynchronous orbit as well as collision events which have increased the amount of space debris. There have been efforts made by several space agencies to control the amount of space debris added to orbit by current and future launches over the last decade \u2014 serving as a temporary fix before removal can be executed. This paper explores known removal efforts through mitigation, projects conceived and tested by DARPA, related space policies and laws, CubeSat technology, and the cataloguing of known space debris. To make space debris removal a reality, roadblocks need to be removed to acquire permission from states or countries for space missions. For example, these restrictions are in place to protect the assets of several countries and organizations. Guidelines set to curb the growth of space debris fail to prevent the growth due to the restrictions for ownership rights making them not as effective. This paper covers space policy and laws, the economy, satellite ownership, international conflict, status of space debris, and the overall feasibility of space debris removal. It will then discuss currently proposed solutions for the removal of space debris. Finally, this paper attempts to weight the advantages and disadvantages of the idea that space debris removal should include the opportunity to recycle materials. For example, defunct satellites and other discarded space crafts could be used for future launches. It will conclude with a personal exploration of what materials can be recycled, what chemical processes can be used to break down materials, and how to combine recycling and chemical processes for space-based recycling stations between Earth and the moon. The overall question that drives the search for making space debris removal a reality is whether it is feasible in multiple areas including technologically, legally, monetarily, and physically.
ContributorsBreden, Elizabeth Catherine (Author) / Foy, Joseph (Thesis director) / Thoesen, Andrew (Committee member) / Maximon, Leonard (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
136656-Thumbnail Image.png
Description
The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing

The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing shelter and spaces for cooking, sleeping, eating, and sanitation. The project proved to be very challenging from the start. First, the livable space is extremely small, being only tall enough for one to sit up straight. The truck and camper shell were both borrowed items, so no modifications were allowed for either, e.g. drilling holes for mounting. The idea was to create a system that could be easily removed, transforming it from a camper to a utility truck. The systems developed for the living environment would be modular and transformative so to accommodate for different necessities when packing. The goal was to create a low-water system with sustainability in mind. Insulating the space was the largest challenge and the most rewarding, using body heat to warm the space and insulate from the elements. Comfort systems were made of high density foam cushions in sections to allow folding and stacking for different functions (sleeping, lounging, and sitting). Sanitation is necessary for healthy living and regular human function. A composting toilet was used for the design, lending to low-water usage and is sustainable over time. Saw dust would be necessary for its function, but upon composting, the unit will generate sufficient amounts of heat to act as a space heater. Showering serves the functions of exfoliation and ridding of bacteria, both of which bath wipes can accomplish, limiting massive volumes of water storage and waste. Storage systems were also designed for modularity. Hooks were installed the length of the bed for hanging or securing items as necessary. Some are available for hanging bags. A cabinetry rail also runs the length of the bed to allow movement of hard storage to accommodate different scenarios. The cooking method is called "sous-vide", a method of cooking food in air-tight bags submerged in hot water. The water is reusable for cooking and no dishes are necessary for serving. Overall, the prototype fulfilled its function as a full living environment with few improvements necessary for future use.
ContributorsLimsirichai, Pimwadee (Author) / Foy, Joseph (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-12
136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136455-Thumbnail Image.png
Description
Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism

Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism that was first cited in literature decades ago but not much is understood about it even today. The cause of this mode of failure results from the initiation of white etched cracks (WECs). In this report, different failure mechanisms, especially premature failure mechanisms that were tested and analyzed are demonstrated as a pathway to understanding this phenomenon. Through the use of various tribometers, samples were tested in diverse and extreme conditions in order to study the effect of these different operational conditions on the specimen. Analysis of the tested samples allowed for a comparison of the microstructure alterations in the tested samples to the field bearings affected by WSF.
ContributorsSharma, Aman (Author) / Foy, Joseph (Thesis director) / Adams, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136693-Thumbnail Image.png
Description
A Guiding Hand: Grief Response in Young Adults works to guide young adults thought the grieving process after the traumatic death of a loved one. It goes through the steps of grieving and what a person can expect when they suddenly lose someone dear. Written from the point of view

A Guiding Hand: Grief Response in Young Adults works to guide young adults thought the grieving process after the traumatic death of a loved one. It goes through the steps of grieving and what a person can expect when they suddenly lose someone dear. Written from the point of view of someone who had lost their best friend in a murder/suicide, A Guiding Hand, shares a personal view that is often missing in other books on grief. This piece works to prepare other young adults for the unexpected emotions that are associated with grief. It also works to provide coping strategies to help recover from a traumatic loss in a healthy manner and to put people in touch with resources they may not know exist in order to help with healing.
ContributorsSmith, Madison Ann (Author) / Foy, Joseph (Thesis director) / Shaeffer, John (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
136494-Thumbnail Image.png
Description
The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be

The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be able to withstand these harsh conditions due the incorporation of a resilient impermeable polymer layer that will be cast above the lower hydrophilic layer. Nanoparticles called zeolites will act as a water selective pathway through this impermeable layer and allow water to flow through the membrane. This membrane will be made using a variety of methods and polymers to determine both the cheapest and most effective way of creating this chemical resistant membrane. If this research is successful, many more water sources can be tapped since the membranes will be able to withstand hard conditions. This document is primarily focused on our progress on the development of a highly permeable polymer-zeolite film that makes up the bottom layer of the membrane. Multiple types of casting methods were investigated and it was determined that spin coating at 4000 rpm was the most effective. Based on a literature review, we selected silicalite-1 zeolites as the water-selective nanoparticle component dispersed in a casting solution of polyacrylonitrile in N-methylpyrrolidinone to comprise this hydrophilic layer. We varied the casting conditions of several simple solution-casting methods to produce thin films on the porous substrate with optimal film properties for our membrane design. We then cast this solution on other types of support materials that are more flexible and inexpensive to determine which combination resulted in the thinnest and most permeable film.
ContributorsHerrera, Sofia Carolina (Author) / Lind, Mary Laura (Thesis director) / Khosravi, Afsaneh (Committee member) / Hestekin, Jamie (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
135850-Thumbnail Image.png
Description
In this study, we propose and then assess the efficacy of a new approach to static suspension to correct for facial paralysis. Our method involves placing barbed sutures through the superficial muscular aponeurotic system (SMAS) and anchoring them in the temporal fascia parallel to the underlying facial muscles. We first

In this study, we propose and then assess the efficacy of a new approach to static suspension to correct for facial paralysis. Our method involves placing barbed sutures through the superficial muscular aponeurotic system (SMAS) and anchoring them in the temporal fascia parallel to the underlying facial muscles. We first analyzed the ability of this procedure to improve facial symmetry by comparing the degree of asymmetry between the paralyzed and unaffected sides of a patient's face (N=10) prior to and following surgery. Then, to determine if symmetry is improved as a result of placing the sutures parallel to the direction of facial muscle forces, we measured the vectors of levator labii superioris and zygomaticus major in cadaver hemifaces (N=3) and compared them to the angles of the vectors of correction from the patient sample to angles of muscle vectors in three facial hemispheres from cadaver controls. Results indicate that: (1) facial symmetry was significantly improved in these patients and (2) this improvement. We conclude that, compared to existing protocols, our novel surgical method is a better means of static suspension for reconstruction following onset of facial paralysis as it is simple to perform, easy to replicate, able to be post-operatively adjusted in-office, has a good long-term prognosis, and, as we have demonstrated, effectively corrects the appearance of asymmetry by working with the underlying facial anatomy.
ContributorsLeach, Garrison Alecsander (Co-author) / Joganic, Jessica (Co-author) / Hooft, Nicole (Co-author) / Joganic, Edward (Co-author, Committee member) / Foy, Joseph (Thesis director) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The scarcity of fresh water worldwide has necessitated improved technology for desalinating sea water. Reverse osmosis membranes are currently limited by their inclination for fouling, in which a layer forms on the surface of the membrane and impedes water flux. This yields shortened membrane lifespan and increased energy costs. Current

The scarcity of fresh water worldwide has necessitated improved technology for desalinating sea water. Reverse osmosis membranes are currently limited by their inclination for fouling, in which a layer forms on the surface of the membrane and impedes water flux. This yields shortened membrane lifespan and increased energy costs. Current technology uses interfacially polymerized polyamide thin film composite membranes, which form nodules, leaves, and other structures that lead to rough film surfaces and may contribute to fouling propensity. In this study, polyamide latex was designed in order to cast a smoother membrane with comparable performance. Polyamide latex particles were formed using a modified procedure based on Lind et. al [10] and characterized for sphericity using scanning electromagnetic microscopy (SEM).
ContributorsMccloskey, Cailen Marie (Author) / Lind, Mary Laura (Thesis director) / Jamieson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137175-Thumbnail Image.png
Description
The purpose of this project is to design a waterproof magnetic coupling that will allow the actuators on remotely operated vehicles (ROV) to remain water tight in extreme underwater conditions for longs periods of time. ROVs are tethered mobile robots controlled and powered by an operator from some distance away

The purpose of this project is to design a waterproof magnetic coupling that will allow the actuators on remotely operated vehicles (ROV) to remain water tight in extreme underwater conditions for longs periods of time. ROVs are tethered mobile robots controlled and powered by an operator from some distance away at the surface of the water. These vehicles all require some method for transmitting power to the surrounding water to interact with their environment, such as in thrusters for propulsion or a claw for manipulation. Many commercially available thrusters, for example, use shaft seals to transfer power through a waterproof housing to the adjacent water. Even though this works excellently for many of them, I propose that having a static seal and transmitting the power from the motor to the shaft through magnetic coupling will allow a much greater depth at which they are waterproof to be achieved. In addition, it will not require the chronic maintenance that dynamic shaft seals entail, making long scientific endeavors possible.
ContributorsHouda, Jonathon Jacob (Author) / Foy, Joseph (Thesis director) / Zhu, Haolin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137193-Thumbnail Image.png
Description
Emergency medicine has long been an important part of the medical system in the United States. Those employed in an emergent setting know how to operate under extremely high stakes. Prehospital care in particular is a vital part of emergency response. Student Emergency Medical Services works to bring said prehospital

Emergency medicine has long been an important part of the medical system in the United States. Those employed in an emergent setting know how to operate under extremely high stakes. Prehospital care in particular is a vital part of emergency response. Student Emergency Medical Services works to bring said prehospital care to ASU in a voluntary, high-quality, and efficient manner. We serve the ASU population while educating our members to be professional individuals for the service of society.
ContributorsDbeis, Ammer M (Author) / Foy, Joseph (Thesis director) / Schroeder, Stefanie (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05