Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 70
Description
This ethnography outlines the live storytelling culture in Phoenix, Arizona, and what each of its sub-cultures contributes to the city's community. Phoenix's live storytelling events incorporate elements of an ancient art form into contemporary entertainment and sophisticated platforms for community building. These events are described and delineated by stylistic, structural,

This ethnography outlines the live storytelling culture in Phoenix, Arizona, and what each of its sub-cultures contributes to the city's community. Phoenix's live storytelling events incorporate elements of an ancient art form into contemporary entertainment and sophisticated platforms for community building. These events are described and delineated by stylistic, structural, and content-based differences into the following categories: open-mic, curated, scripted, non-scripted, micro-culture, and marginalized groups. Research presented in this report was collected by reviewing scholarly materials about the social power of storytelling, attending live storytelling events across all categories, and interviewing event organizers and storytellers. My research developed toward an auto-ethnographic direction when I joined the community of storytellers in Phoenix, shifting the thesis to assume a voice of solidarity with the community. This resulted in a research project framed primarily as an ethnography that also includes my initial, personal experiences as a storyteller. The thesis concludes with the art form's macro-influences on Phoenix's rapidly-expanding community.
ContributorsNorton, Maeve (Author) / Dombrowski, Rosemarie (Thesis director) / McAdams, Charity (Committee member) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
Each year, 30,000 patients obtain transplants. To prevent graft rejection, immunosuppressants such as tacrolimus are prescribed. Due to tacrolimus's narrow therapeutic range, a dose that is too low places patients at risk for transplant rejection, but too high of a dose leads to kidney failure. The de facto method for

Each year, 30,000 patients obtain transplants. To prevent graft rejection, immunosuppressants such as tacrolimus are prescribed. Due to tacrolimus's narrow therapeutic range, a dose that is too low places patients at risk for transplant rejection, but too high of a dose leads to kidney failure. The de facto method for monitoring of transplant patient health is bimonthly blood draws, which are cumbersome, painful, and difficult to translate into urgently needed dosage changes in a timely manner. To improve long-term transplant survival rates, we propose a finger-prick sensor that will provide patients and healthcare providers with a measurement of tacrolimus, immune health (through IL-12), and kidney damage (through cystatin C) levels 100 times more frequently than the status quo. Additionally, patient quality of life will be improved due to reduction in time and pain associated with blood draws. Optimal binding frequencies for each marker were found. However, due to limitations with EIS, the integration of the detection of the three markers into one multimarker sensing platform has not yet been realized. To this end, impedance-time tests were run on each marker along with different antibodies, and optimal times of each marker were determined to be 17s, 6s, and 2s, for tacrolimus, cystatin c, and IL-12, respectively (n=6). The integration of impedance-time analysis with traditional EIS methodologies has the potential to enable multi-marker analysis by analyzing binding kinetics on a single electrode with respect to time. Thus, our results provide unique insight into possibilities to improve and facilitate detection of multiple markers not only for the sensor for solid organ transplant patients, but for the monitoring of patients with disease that also entail the observation of multiple markers. Furthermore, the use of impedance-time testing also provides the ability for another way to optimize accuracy/precision of marker detection because it specifies a particular time, in addition to a particular optimal binding frequency, at which to measure concentration.
ContributorsDoshi, Meera Kshitij (Author) / LaBelle, Jeffrey (Thesis director) / Steidley, Eric (Committee member) / Harrington Bioengineering Program (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136597-Thumbnail Image.png
Description
In order to address infant respiratory distress syndrome, this study attempts to develop and characterize a textile strain gauge fabricated with stainless steel, wool, elastic, and tencel. Faire Isle knitted patterns are investigated in order to create channels of conductivity for a linear sensor. The effect linear yarn density on

In order to address infant respiratory distress syndrome, this study attempts to develop and characterize a textile strain gauge fabricated with stainless steel, wool, elastic, and tencel. Faire Isle knitted patterns are investigated in order to create channels of conductivity for a linear sensor. The effect linear yarn density on linearity and sensitivity and hysteresis of the sensors is also investigated for sensor optimization. It was found that there was a significant difference between the patterned and non-patterned samples. The patterned sensors were found to have a lower range of resistance than the non-patterned sensors and a smaller average standard of deviation between measurements. The 7 tension, lower linear yarn density, elastic patterned sample was the only sample to not exhibit hysteresis after three trials as well as have a linear range from 11.5cm to 13cm where the sensor behaves in accordance with a linear transfer function.
ContributorsBrown, Shannon (Co-author) / Irimata, Lisa (Co-author) / LaBelle, Jeffrey (Thesis director) / Hanson, Erika (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
Description
Poems for the Future President is a chapbook of poetry by Michael Bartelt. Rooted in the democratic idealism of Walt Whitman and the American poetic tradition, the collection is a reflection on Americas of the past, the America we live in now, and an America that could be. The poems

Poems for the Future President is a chapbook of poetry by Michael Bartelt. Rooted in the democratic idealism of Walt Whitman and the American poetic tradition, the collection is a reflection on Americas of the past, the America we live in now, and an America that could be. The poems encompass a thematic breadth that includes ecological examinations filtered through ancient Taoist and modern ecocritical philosophy, searches for political and ethical authenticity in an over-stimulated information age, and questions about the meaning of romance and tradition in a dystopian present. Included here is the manuscript's critical framework, which highlights the poetry's main influences. The manuscript itself is also included.
ContributorsBartelt, Michael Joseph (Author) / Dombrowski, Rosemarie (Thesis director) / Orion, Shawnte (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Department of English (Contributor)
Created2014-12
135820-Thumbnail Image.png
Description
This paper proposes a new framework design for the lightweight transradial prosthesis. This device was designed to be light-weight, easily manufactured, inexpensive, and to have a high interstitial free space volume for electrical components and customization. Press-fit junctions between fins allow for little or no adhesives, allowing for easily replaceable

This paper proposes a new framework design for the lightweight transradial prosthesis. This device was designed to be light-weight, easily manufactured, inexpensive, and to have a high interstitial free space volume for electrical components and customization. Press-fit junctions between fins allow for little or no adhesives, allowing for easily replaceable parts. Designs were constructed out of chipboard and run through an assortment of tests to see if each design iterations met structural design specifications. There were four main design iterations tested: 4, 8, 12 fin designs, and a 4 fin design with additional angled fins for torsional support (4T). Compression, torsion, and 3-point bending tests were all performed on each cylindrical iteration. Basic tensile and material testing was done on chipboard to support results. The force applied to a human arm during a fall is approximately 500 lbf [13]. Compression tests yielded a strength of approximately 300 lbf for the cylindrical designs. ANOVAs and T-tests were performed to find significance in compressive strength between the design iterations with the varied number of fins (p<<0.05). The torsional strength of the human arm, without causing great strain or discomfort has a max value of approximately 15 Nm [14]. This matched the torsional values of the 4T. design [14]. The 4, 8, and 12 designs' torsional strengths were linear with values of approximately 4, 7, and 12 Nm respectively. The 3-point bending test yielded the flexural stress and strain values to find compressive strength in the convex direction as well as the displacement and deformation in each sample. The material chipboard was found to be variable with elastic modulus, Poisson's ratio, and tensile strength. Each experimental procedure was done as a proof of concept for future prosthesis design.
ContributorsMcbryan, Sarah Jane (Author) / LaBelle, Jeffrey (Thesis director) / Lathers, Steven (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136008-Thumbnail Image.png
Description
Self-monitoring of blood glucose (SMBG) is the standard of care in diabetes management. Current technologies for SMBG are based upon enzymatic electrochemical (amperometric) sensing. To increase the sensitivity and specificity of current devices, a novel method of detecting glucose using electrochemical impedance spectroscopy (EIS) technology is explored. To test the

Self-monitoring of blood glucose (SMBG) is the standard of care in diabetes management. Current technologies for SMBG are based upon enzymatic electrochemical (amperometric) sensing. To increase the sensitivity and specificity of current devices, a novel method of detecting glucose using electrochemical impedance spectroscopy (EIS) technology is explored. To test the ability of EIS methods to detect glucose, the enzyme glucose oxidase (GOx) was fixed to gold electrodes through the means of a specific immobilization process. Once GOx was fixed to the gold electrode surface, a 5 mV sine wave sweeping frequencies from 100 kHz to 1 Hz was induced at a glucose range 0-500 mg/dL mixed with a ferricyanide redox mediator. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for the glucose-GOx binding interaction, and was determined to be 1.17 kHz in purified solutions. Four separate electrodes were constructed and date from each were averaged. The correlation between the impedance response and concentration at the low range of detection (0-100 mg/dL of gluose) was determined to be 3.19 ohm/ln (mg/dL) with an R-squared value of 0.86. Its associated lower limit of detection was found to be 41 mg/dL. The same frequency of 1.17 kHz was then verified in whole blood under the glucose range of 0-100 mg/dL while diluting the blood to observe effect. As the blood concentration increased, the response of the sensor decreased logarithmically. The maximized blood detection volume was determined to be 25% whole blood suggesting dilution, coatings, or filtration is required for future adaptation. The above data confirms that EIS offers a new method of glucose detection as an alternative technology for SMBG and offers improved detection at lower concentrations of glucose. The unique frequency response of individual markers allows for modulation of signals so that several markers could be measured with a single sensor. Future work includes assessment of other diabetes associated biomarkers that can be measured on a single sensor, integration testing and tuning of the biomarkers, impedance-time sensing development, and finally, testing on control subjects.
ContributorsAdamson, Teagan (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136182-Thumbnail Image.png
Description
The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic

The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic code. They aim to solve these genetic mysteries using whole exome sequencing, a method that prioritizes the protein-coding portion of the genome in the search for disease-causing variants. Unfortunately, a communication gap sometimes exists between the TGen scientists and the patients they serve. I have seen, first hand, the kind of confusion that this study elicits in the families of its participants. Therefore, for my thesis, I decided to create a booklet that is meant to provide some clarity as to what exactly The Dorrance Center for Rare Childhood Disorders does to help diagnose children with rare disorders. The purpose of the booklet is to dispel any confusion regarding the study by providing a general review of genetics and an application of these lessons to the relevant sequencing technology as well as a discussion of the causes and effects of genetic mutations that often times are linked to rare childhood disorders.
ContributorsCambron, Julia Claire (Author) / LaBelle, Jeffrey (Thesis director) / Huentelman, Matt (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133418-Thumbnail Image.png
Description
Counternarratives is a print anthology of short fiction, nonfiction, and poetry that is characterized by refusal, resistance, and joy. The anthology contains works by writers from all over North America and is the product of a months-long process of collection and curation. The anthology is grounded in the experience of

Counternarratives is a print anthology of short fiction, nonfiction, and poetry that is characterized by refusal, resistance, and joy. The anthology contains works by writers from all over North America and is the product of a months-long process of collection and curation. The anthology is grounded in the experience of living in the desert southwest, and many of the works reflect that, but it also includes works that reflect different geographical experiences. What binds the works in the anthology together, ultimately, is the ways in which they refuse and resist dominant discourses that dehumanize for the sake of the global capitalist system and in which they joyfully embody alternative ways of existing. Some works take on the aforementioned system explicitly; others do so implicitly, but all of their truths speak to realities that it, through one mechanism or another, marginalizes and obscures. The anthology is published by Four Chambers Press.
ContributorsAnderson, Evan William (Author) / Dombrowski, Rosemarie (Thesis director) / Friedman, Jacob (Committee member) / School of International Letters and Cultures (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05