Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 38
Description
This project's goal was to design a Central Processing Unit (CPU) incorporating a fairly large instruction set and a multistage pipeline design with the potential to be used in a multi-core system. The CPU was coded and synthesized with Verilog. This was accomplished by building on the CPU design from

This project's goal was to design a Central Processing Unit (CPU) incorporating a fairly large instruction set and a multistage pipeline design with the potential to be used in a multi-core system. The CPU was coded and synthesized with Verilog. This was accomplished by building on the CPU design from fundamentals learned in CSE320 and increasing the instruction set to resemble a proper Reduced Instruction Set Computing (RISC) CPU system. A multistage pipeline was incorporated to the CPU to increase instruction throughput, or instructions per second. A major area of focus was on creating a multi-core design. The design used is master-slave in nature. The master core instructs the sub-cores where they should begin execution, the idea being that the operating system or kernel will be executing on the master core and the "user space" programs will be run on the sub-cores. The rationale behind this is that the system would specialize in running several small functions on all of its many supported cores. The system supports around 45 instructions, which include several types of jumps and branches (for changing the program counter based on conditions), arithmetic operations (addition, subtraction, or, and, etc.), and system calls (for controlling the core execution). The system has a very low Clocks per Instruction ratio (CPI), but to achieve this the second stage contains several modules and would most likely be a bottleneck for performance if implemented. The CPU is not perfect and contains a few errors and oversights, but the system as a whole functions as intended.
ContributorsKolden, Brian Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136637-Thumbnail Image.png
Description
The purpose of this project was to construct and write code for a vehicle to take advantage of the benefits of combining stepper motors with mecanum wheels. This process involved building the physical vehicle, designing a custom PCB for the vehicle, writing code for the onboard microprocessor, and implementing motor

The purpose of this project was to construct and write code for a vehicle to take advantage of the benefits of combining stepper motors with mecanum wheels. This process involved building the physical vehicle, designing a custom PCB for the vehicle, writing code for the onboard microprocessor, and implementing motor control algorithms.
ContributorsDavis, Severin Jan (Author) / Burger, Kevin (Thesis director) / Vannoni, Greg (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136728-Thumbnail Image.png
Description
This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral

This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral devices in the same way as the hardware used in the embedded systems lab at ASU. This project would cut down the substantial amount of time students spend commuting to the lab. Having the processor directly at their disposal would also encourage them to spend more time outside of class learning the hardware and familiarizing themselves with development on an embedded micro-controller. The model will be accurate, fast and reliable. These aspects will be achieved through rigorous unit testing and use of the OVP platform which provides instruction accurate simulations at hundreds of MIPS (million instructions per second) for the specified model. The end product was able to accurately simulate a subset of the Coldfire instructions at very high rates.
ContributorsDunning, David Connor (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136364-Thumbnail Image.png
Description
The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and

The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and FLAC. Finally, the project is also to be driven by a mobile app running on a smartphone or tablet. To achieve this, a client server design was employed where the Raspberry Pi acts as the server and the mobile app is the client. The server functionality was achieved using a Python script that listens on a socket and calls various executables that handle the different formats of music being played. The client functionality was achieved by programming an Android app in Java that sends encoded commands to the server, which the server decodes and begins playing the music that command dictates. The designs for both the client and server are easily extensible and allow for any future modifications to the project to be easily made.
ContributorsStorto, Michael Olson (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
133926-Thumbnail Image.png
Description
More than 260 million people suffer from an anxiety disorder worldwide, with 40 million in the U.S. alone—18% of the American population. And that label includes everything from Social Anxiety and Posttraumatic Stress Disorder to phobias and Obsessive Compulsive Disorder. Thus, people with anxiety may not have a singular cause

More than 260 million people suffer from an anxiety disorder worldwide, with 40 million in the U.S. alone—18% of the American population. And that label includes everything from Social Anxiety and Posttraumatic Stress Disorder to phobias and Obsessive Compulsive Disorder. Thus, people with anxiety may not have a singular cause for their worry, but a myriad number of them that influence every aspect of their lives. And, that doesn’t include people who’ve never been formally diagnosed and don’t receive proper medication or therapy.

Unfortunately, medication has many possible side effects, and both medication and therapy are often expensive. However, there are alternatives for someone dealing with anxiety. This book proposal offers a range of solutions for anxiety management, from do it yourself techniques like guided imagery and yoga, to biofeedback devices like HeartMath, to research trials on Eye Movement Desensitization and Reprocessing, as well as Repetitive Transcranial Magnetic Stimulation. The idea was not to outline every potential solution for anxiety, but to educate people on available opportunities and empower them to take control.

Though anxiety can be managed and reduced, there is no cure. That’s because anxiety is a normal part of life, and in most cases a helpful evolutionary tool to keep people on track. But, when this anxiety becomes a burden on someone’s life, there is a plethora of alternative solutions available. Understanding anxiety and learning to manage it is not an impossible task. This thesis provides an introduction to the idea and then allows the reader to move forward on their own path as they choose.
ContributorsSchneider, Sage Ann (Author) / deLusé, Stephanie (Thesis director) / Boyd, Patricia (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Department of English (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137216-Thumbnail Image.png
Description
Image stabilization is a highly desired feature for many systems involving cameras. A camera stabilizer effectively prevents or compensates for unwanted camera movement to provide this stabilization. The use of stabilized camera technology on board aerial vehicles is one such application where the stabilization can greatly improve the overall capability

Image stabilization is a highly desired feature for many systems involving cameras. A camera stabilizer effectively prevents or compensates for unwanted camera movement to provide this stabilization. The use of stabilized camera technology on board aerial vehicles is one such application where the stabilization can greatly improve the overall capability of the system. The requirements for such a system include a continuous control algorithm and hardware to determine and adjust the camera orientation. The topic of developing an aerial camera control and electronic stabilization system is thus explored in the contents of this paper.
ContributorsJauregui, Joseph (Co-author) / Brown, Steven (Co-author) / Burger, Kevin (Thesis director) / Hansen, Mark (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137414-Thumbnail Image.png
Description
The purpose of this project was to create a modular embedded systems platform that would provide a hands-on lab experience for students learning about embedded systems protocols. The system would be designed to be modular, expandable, and productizable. Its modularity would eliminate errors in the design and make the entire

The purpose of this project was to create a modular embedded systems platform that would provide a hands-on lab experience for students learning about embedded systems protocols. The system would be designed to be modular, expandable, and productizable. Its modularity would eliminate errors in the design and make the entire system more robust. It would also be expandable, which means additional project boards could be created in the future without requiring a complete redesign of the system. And finally, productizing the entire system would allow it to be sold to other universities who may have a similar program that would benefit from a system such as the OCTOPUS.
ContributorsDavis, Mareike (Author) / Burger, Kevin (Thesis director) / Vannoni, Greg (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2013-12
137135-Thumbnail Image.png
Description
This is a book proposal for a Study Abroad Survival Guide entitled "A Guide to Conquering Study Abroad: My Experience in Western Europe." It includes both a proposal and manuscript. The proposal is directed at Avalon Travel, a large publisher. The manuscript follows the book proposal and would also be

This is a book proposal for a Study Abroad Survival Guide entitled "A Guide to Conquering Study Abroad: My Experience in Western Europe." It includes both a proposal and manuscript. The proposal is directed at Avalon Travel, a large publisher. The manuscript follows the book proposal and would also be sent to the publisher. My book highlights key things that students must know about going abroad before they go, while they are there, and when they get back. This information will be presented in a hard copy and an eBook. This book's purpose is to encourage students to study abroad and help prepare them for the adventures ahead. While studying abroad in Rome for a semester, I realized I wanted to help persuade students that studying abroad is an unbelievable opportunity, and wanted to help answer their questions that arise before and along the way. Distribution for this book will begin locally at Arizona State University before moving to other college campuses. The marketing focus will be on other Pac-12 Universities. Scouring the internet and library databases reveals no book that fills this niche of advising college students thinking about, or already studying abroad. Part of the reason I am the best person to write a study abroad survival guide is because I went abroad and had a very successful trip.
ContributorsPfeiffer, Ryan Edward (Author) / deLusé, Stephanie (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Department of Marketing (Contributor) / Department of Finance (Contributor)
Created2014-05
136896-Thumbnail Image.png
Description
The compelling idea of this thesis is to create a cookbook that will serve college students as a fun, smart, relevant resource for recipes and cooking insights. This thesis discusses the process of writing a nonfiction publishing proposal for my college cookbook, American College Kitchen. It includes an explanation for

The compelling idea of this thesis is to create a cookbook that will serve college students as a fun, smart, relevant resource for recipes and cooking insights. This thesis discusses the process of writing a nonfiction publishing proposal for my college cookbook, American College Kitchen. It includes an explanation for why I wanted to write the proposal and details the creative evolution of the original idea. Research is presented on the positive and negative aspects of self-publishing versus traditional publishing. Primary research was conducted on current Arizona State University students in the form of a Qualtrics survey. The survey ascertained students' cooking habits, how much time they spend cooking, where they get their recipes, and how often they cook, among other statistics. The results were analyzed using IBM SPSS predictive analytics software. This thesis concludes with a personal reflection on the knowledge gained throughout the process.
ContributorsBayuk, Michele Shannon (Author) / deLusé, Stephanie (Thesis director) / Morris, Paul (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
136931-Thumbnail Image.png
Description
This guide book was written for Arizona State University students, and focuses on teaching the importance of balanced, holistic, and preventative approaches to maintaining a healthy lifestyle. The main purpose of formulating this guide was to help students achieve a realistic balance between academics, health, and various responsibilities beyond school.

This guide book was written for Arizona State University students, and focuses on teaching the importance of balanced, holistic, and preventative approaches to maintaining a healthy lifestyle. The main purpose of formulating this guide was to help students achieve a realistic balance between academics, health, and various responsibilities beyond school. The project itself consists of a complete manuscript of the author's guide book, entitled Be Well: A Briefish Guide to Thriving at ASU, framed within a book proposal. There are five main chapters, including information and tips for various aspects of physical and emotional health. Included at the end of the manuscript is a list of referenced material. The information contained in the guide is evidence based, and reflects the research the author has done into each topic covered.
ContributorsVega, Grace-Marie (Author) / deLusé, Stephanie (Thesis director) / Hoffner, Kristin (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-05