Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 33
Description
This project's goal was to design a Central Processing Unit (CPU) incorporating a fairly large instruction set and a multistage pipeline design with the potential to be used in a multi-core system. The CPU was coded and synthesized with Verilog. This was accomplished by building on the CPU design from

This project's goal was to design a Central Processing Unit (CPU) incorporating a fairly large instruction set and a multistage pipeline design with the potential to be used in a multi-core system. The CPU was coded and synthesized with Verilog. This was accomplished by building on the CPU design from fundamentals learned in CSE320 and increasing the instruction set to resemble a proper Reduced Instruction Set Computing (RISC) CPU system. A multistage pipeline was incorporated to the CPU to increase instruction throughput, or instructions per second. A major area of focus was on creating a multi-core design. The design used is master-slave in nature. The master core instructs the sub-cores where they should begin execution, the idea being that the operating system or kernel will be executing on the master core and the "user space" programs will be run on the sub-cores. The rationale behind this is that the system would specialize in running several small functions on all of its many supported cores. The system supports around 45 instructions, which include several types of jumps and branches (for changing the program counter based on conditions), arithmetic operations (addition, subtraction, or, and, etc.), and system calls (for controlling the core execution). The system has a very low Clocks per Instruction ratio (CPI), but to achieve this the second stage contains several modules and would most likely be a bottleneck for performance if implemented. The CPU is not perfect and contains a few errors and oversights, but the system as a whole functions as intended.
ContributorsKolden, Brian Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136637-Thumbnail Image.png
Description
The purpose of this project was to construct and write code for a vehicle to take advantage of the benefits of combining stepper motors with mecanum wheels. This process involved building the physical vehicle, designing a custom PCB for the vehicle, writing code for the onboard microprocessor, and implementing motor

The purpose of this project was to construct and write code for a vehicle to take advantage of the benefits of combining stepper motors with mecanum wheels. This process involved building the physical vehicle, designing a custom PCB for the vehicle, writing code for the onboard microprocessor, and implementing motor control algorithms.
ContributorsDavis, Severin Jan (Author) / Burger, Kevin (Thesis director) / Vannoni, Greg (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136663-Thumbnail Image.png
Description
Obesity has become a major area of research in many fields due to the increasing obesity rate not only in The United States, but also around the world. Research concerning obesity stigma has both physical and mental health implications. Weight bias and obesity stigma represent important research areas for health

Obesity has become a major area of research in many fields due to the increasing obesity rate not only in The United States, but also around the world. Research concerning obesity stigma has both physical and mental health implications. Weight bias and obesity stigma represent important research areas for health professionals as they confront these issues on a daily basis in interactions with their patients. To explore how gender, ethnicity, and a person's own BMI affect the stigma of certain weight related terms, a set of 264 participant's surveys on weight related situations on the campus of Arizona State University were analyzed. Using univariate analysis to determine frequency of words deemed most or least acceptable as well as independent t-test for gender and ANOVA for ethnicity and own BMI, we found that participant's view more clinical terms such as "unhealthy BMI" and "BMI" as acceptable words for use during a physician-patient interaction. Analysis across genders revealed the highest number of differences in terms, with females generally ranking terms across the board as less acceptable then men. Differences varied little between ethnicities; however, own BMI revealed more differences between terms; underweight participants did not rank any terms as positive. We analyzed average ATOP (Attitudes Toward Obese People) scores and found that there was no significant difference in average ATOP scores between gender and a participant's own BMI, but a statistical significance did exist between ethnic categories. This study showed that the term "obese/obesity", although normally considered to be a clinical term by many was not ranked as very positive across gender, ethnicity, or own BMI. Based on these findings, new material should be created to inform physicians on how to talk about weight related problems with certain populations of patients.
ContributorsBlasco, Drew Adair (Author) / Wutich, Amber (Thesis director) / Brewis Slade, Alexandra (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / Department of Psychology (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-12
136728-Thumbnail Image.png
Description
This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral

This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral devices in the same way as the hardware used in the embedded systems lab at ASU. This project would cut down the substantial amount of time students spend commuting to the lab. Having the processor directly at their disposal would also encourage them to spend more time outside of class learning the hardware and familiarizing themselves with development on an embedded micro-controller. The model will be accurate, fast and reliable. These aspects will be achieved through rigorous unit testing and use of the OVP platform which provides instruction accurate simulations at hundreds of MIPS (million instructions per second) for the specified model. The end product was able to accurately simulate a subset of the Coldfire instructions at very high rates.
ContributorsDunning, David Connor (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136512-Thumbnail Image.png
Description
The study examines cross-cultural perceptions of wastewater reuse from 282 participants from four global sites representing varied levels of socio-economic and political development from the Global North and Global South: Spain, New Zealand, Fiji, and Guatemala. The data comes from the Global Ethnohydrology Survey conducted by the School of Human

The study examines cross-cultural perceptions of wastewater reuse from 282 participants from four global sites representing varied levels of socio-economic and political development from the Global North and Global South: Spain, New Zealand, Fiji, and Guatemala. The data comes from the Global Ethnohydrology Survey conducted by the School of Human Evolution and Social Change during the summer of 2013. The Global Ethnohydrology Study is a transdisciplinary multi-year research initiative that examines the range of variation in local ecological knowledge of water issues, also known as "ethnohydrology." Participants were asked about their willingness, level of disgust, and concern with using treated wastewater for various daily activities. Additionally, they were asked to draw schematic representations of how wastewater should be treated to become drinkable again. Using visual content analysis, the drawings were coded for a variety of treatment levels and specific treatment processes. Conclusions about the perceived health implications from wastewater reuse that can stem from drinking treated wastewater were made. The relationship between humans and wastewater is one that has many direct social and health impacts on communities at large. In reaction to global limitations of freshwater, wastewater serves as a valuable resource to tap into. This research examines the cross-cultural public health concerns about treated wastewater in order to draw conclusions that can aid in strategic implementation of advocacy and public education about wastewater reuse.
ContributorsPatel, Sarah Shakir (Author) / Wutich, Amber (Thesis director) / Rice, Jacelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136215-Thumbnail Image.png
Description
Children's drawings are increasingly being used to assess understanding and diagnose misconceptions about water issues and the environment. As part of Arizona State University's Global Ethnohydrology Study and Community Health and Medical Anthropology Field School, 315 pieces of artwork from 158 Guatemalan schoolchildren, ages 9-10, were collected using ethnographic field

Children's drawings are increasingly being used to assess understanding and diagnose misconceptions about water issues and the environment. As part of Arizona State University's Global Ethnohydrology Study and Community Health and Medical Anthropology Field School, 315 pieces of artwork from 158 Guatemalan schoolchildren, ages 9-10, were collected using ethnographic field methods. The children were asked to draw two pieces of art: one showing how they saw water being used in their neighborhood today and one showing how they imagined water would be used in their neighborhood 100 years from now. Using visual content analysis, the drawings were coded for the presence of vegetation, scarcity, pollution, commercial sources, existing technology, technological innovation, domestic use, and natural sources of water. The study finds that (1) students' drawings of the future contain significantly more pollution and scarcity than those in the present, and (2) both boys and girls depict existing technology significantly more often in the drawings of today than the drawings of the future. Additionally, (1) boys are significantly more likely than girls to draw more negative depictions of water (i.e., pollution and scarcity), and (2) boys are significantly more likely than girls to depict the natural world (i.e., natural sources of water). Through examining gendered perceptions and future expectations of climate change and water issues, this study explores possible areas of intervention in environmental education in a developing country.
ContributorsMcAtee, Hannah Lee (Author) / Wutich, Amber (Thesis director) / Brewis, Alexandra (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
136364-Thumbnail Image.png
Description
The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and

The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and FLAC. Finally, the project is also to be driven by a mobile app running on a smartphone or tablet. To achieve this, a client server design was employed where the Raspberry Pi acts as the server and the mobile app is the client. The server functionality was achieved using a Python script that listens on a socket and calls various executables that handle the different formats of music being played. The client functionality was achieved by programming an Android app in Java that sends encoded commands to the server, which the server decodes and begins playing the music that command dictates. The designs for both the client and server are easily extensible and allow for any future modifications to the project to be easily made.
ContributorsStorto, Michael Olson (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
137216-Thumbnail Image.png
Description
Image stabilization is a highly desired feature for many systems involving cameras. A camera stabilizer effectively prevents or compensates for unwanted camera movement to provide this stabilization. The use of stabilized camera technology on board aerial vehicles is one such application where the stabilization can greatly improve the overall capability

Image stabilization is a highly desired feature for many systems involving cameras. A camera stabilizer effectively prevents or compensates for unwanted camera movement to provide this stabilization. The use of stabilized camera technology on board aerial vehicles is one such application where the stabilization can greatly improve the overall capability of the system. The requirements for such a system include a continuous control algorithm and hardware to determine and adjust the camera orientation. The topic of developing an aerial camera control and electronic stabilization system is thus explored in the contents of this paper.
ContributorsJauregui, Joseph (Co-author) / Brown, Steven (Co-author) / Burger, Kevin (Thesis director) / Hansen, Mark (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137278-Thumbnail Image.png
Description
Understanding more about the similarities and differences in cultural perceptions of climate change-related disease causation can better inform culturally specific public health measures. Using interviews conducted with 685 adults in eight diverse global locations ranging from Fiji and China to England and Phoenix, Arizona, this study explores climate change-disease beliefs

Understanding more about the similarities and differences in cultural perceptions of climate change-related disease causation can better inform culturally specific public health measures. Using interviews conducted with 685 adults in eight diverse global locations ranging from Fiji and China to England and Phoenix, Arizona, this study explores climate change-disease beliefs within and across diverse cultures and comparisons between cultural and scientific models. A cultural consensus analysis was employed to identify a "culturally correct" model for each study site. Next, a scientific model was generated based on current scientific consensus regarding climate change- disease connections. Using the Quadratic Assignment Procedure (QAP), we determined the amount of correlation shared between the scientific model and each cultural model. The analysis revealed a high level of intercorrelation between the models of English speaking, economically developed sites such as Phoenix, Arizona. Additionally, cultural models from the non-English speaking sites were highly intercorrelated with one another. Overall, the English speaking sites tended to have more complex models with a greater density of causal links. Cultural models from the English speaking sites also demonstrated high levels of correlation with the scientific model. In comparison, the cultural models from the non-English speaking sites exhibited little correlation with the scientific model. Based on these findings, we suggest that cultural beliefs related to climate change-related disease causation may be influenced by complex local factors. For example, differences in education and media influences along with localized differences in climate change impacts may, in part, contribute to divergences between the cultural models.
Created2014-05
137414-Thumbnail Image.png
Description
The purpose of this project was to create a modular embedded systems platform that would provide a hands-on lab experience for students learning about embedded systems protocols. The system would be designed to be modular, expandable, and productizable. Its modularity would eliminate errors in the design and make the entire

The purpose of this project was to create a modular embedded systems platform that would provide a hands-on lab experience for students learning about embedded systems protocols. The system would be designed to be modular, expandable, and productizable. Its modularity would eliminate errors in the design and make the entire system more robust. It would also be expandable, which means additional project boards could be created in the future without requiring a complete redesign of the system. And finally, productizing the entire system would allow it to be sold to other universities who may have a similar program that would benefit from a system such as the OCTOPUS.
ContributorsDavis, Mareike (Author) / Burger, Kevin (Thesis director) / Vannoni, Greg (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2013-12