Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 33
131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133882-Thumbnail Image.png
Description
Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the

Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the outcome of the crisis leads the student to commit to becoming an engineer. During the crisis phase, students are offered a multitude of experiences to shape their values and choices to influence commitment to becoming an engineering student. Student's identities in engineering are fostered through mentoring from industry, alumni, and peer coaching [3], [4]; experiences that emphasize awareness of the importance of professional interactions [5]; and experiences that show creativity, collaboration, and communication as crucial components to engineering. Further strategies to increase students' persistence include support in their transition to becoming an engineering student, education about professional engineers and the workplace [6], and engagement in engineering activities beyond the classroom. Though these strategies are applied to all students, there are challenges students face in confronting their current identity and beliefs before they can understand their value to society and achieve personal satisfaction. To understand student's progression in developing their engineering identity, first year engineering students were surveyed at the beginning and end of their first semester. Students were asked to rate their level of agreement with 22 statements about their engineering experience. Data included 840 cases. Items with factor loading less than 0.6 suggesting no sufficient explanation were removed in successive factor analysis to identify the four factors. Factor analysis indicated that 60.69% of the total variance was explained by the successive factors. Survey questions were categorized into three factors: engineering identity as defined by sense of belonging and self-efficacy, doubts about becoming an engineer, and exploring engineering. Statements in exploring engineering indicated student awareness, interest and enjoyment within engineering. Students were asked to think about whether they spent time learning what engineers do and participating in engineering activities. Statements about doubts about engineering to engineering indicated whether students had formed opinions about their engineering experience and had understanding about their environment. Engineering identity required thought in belonging and self-efficacy. Belonging statements called for thought about one's opinion in the importance of being an engineer, the meaning of engineering, an attachment to engineering, and self-identification as an engineer. Statements about self-efficacy required students to contemplate their personal judgement of whether they would be able to succeed and their ability to become an engineer. Effort in engineering indicated student willingness to invest time and effort and their choices and effort in their engineering discipline.
ContributorsNguyen, Amanda (Author) / Ganesh, Tirupalavanam (Thesis director) / Robinson, Carrie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This project's goal was to design a Central Processing Unit (CPU) incorporating a fairly large instruction set and a multistage pipeline design with the potential to be used in a multi-core system. The CPU was coded and synthesized with Verilog. This was accomplished by building on the CPU design from

This project's goal was to design a Central Processing Unit (CPU) incorporating a fairly large instruction set and a multistage pipeline design with the potential to be used in a multi-core system. The CPU was coded and synthesized with Verilog. This was accomplished by building on the CPU design from fundamentals learned in CSE320 and increasing the instruction set to resemble a proper Reduced Instruction Set Computing (RISC) CPU system. A multistage pipeline was incorporated to the CPU to increase instruction throughput, or instructions per second. A major area of focus was on creating a multi-core design. The design used is master-slave in nature. The master core instructs the sub-cores where they should begin execution, the idea being that the operating system or kernel will be executing on the master core and the "user space" programs will be run on the sub-cores. The rationale behind this is that the system would specialize in running several small functions on all of its many supported cores. The system supports around 45 instructions, which include several types of jumps and branches (for changing the program counter based on conditions), arithmetic operations (addition, subtraction, or, and, etc.), and system calls (for controlling the core execution). The system has a very low Clocks per Instruction ratio (CPI), but to achieve this the second stage contains several modules and would most likely be a bottleneck for performance if implemented. The CPU is not perfect and contains a few errors and oversights, but the system as a whole functions as intended.
ContributorsKolden, Brian Andrew (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136637-Thumbnail Image.png
Description
The purpose of this project was to construct and write code for a vehicle to take advantage of the benefits of combining stepper motors with mecanum wheels. This process involved building the physical vehicle, designing a custom PCB for the vehicle, writing code for the onboard microprocessor, and implementing motor

The purpose of this project was to construct and write code for a vehicle to take advantage of the benefits of combining stepper motors with mecanum wheels. This process involved building the physical vehicle, designing a custom PCB for the vehicle, writing code for the onboard microprocessor, and implementing motor control algorithms.
ContributorsDavis, Severin Jan (Author) / Burger, Kevin (Thesis director) / Vannoni, Greg (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136728-Thumbnail Image.png
Description
This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral

This project was centered around designing a processor model (using the C programming language) based on the Coldfire computer architecture that will run on third party software known as Open Virtual Platforms. The end goal is to have a fully functional processor that can run Coldfire instructions and utilize peripheral devices in the same way as the hardware used in the embedded systems lab at ASU. This project would cut down the substantial amount of time students spend commuting to the lab. Having the processor directly at their disposal would also encourage them to spend more time outside of class learning the hardware and familiarizing themselves with development on an embedded micro-controller. The model will be accurate, fast and reliable. These aspects will be achieved through rigorous unit testing and use of the OVP platform which provides instruction accurate simulations at hundreds of MIPS (million instructions per second) for the specified model. The end product was able to accurately simulate a subset of the Coldfire instructions at very high rates.
ContributorsDunning, David Connor (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136364-Thumbnail Image.png
Description
The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and

The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and FLAC. Finally, the project is also to be driven by a mobile app running on a smartphone or tablet. To achieve this, a client server design was employed where the Raspberry Pi acts as the server and the mobile app is the client. The server functionality was achieved using a Python script that listens on a socket and calls various executables that handle the different formats of music being played. The client functionality was achieved by programming an Android app in Java that sends encoded commands to the server, which the server decodes and begins playing the music that command dictates. The designs for both the client and server are easily extensible and allow for any future modifications to the project to be easily made.
ContributorsStorto, Michael Olson (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
133927-Thumbnail Image.png
Description
This project examines the contributions of environmental effects and role models to the overall sense of belonging and interest in science, technology, engineering, and mathematics (STEM) fields among women. Eleven female engineers, ranging from college freshmen, seniors, and industry members, were interviewed for their perspectives on how their childhoods, female

This project examines the contributions of environmental effects and role models to the overall sense of belonging and interest in science, technology, engineering, and mathematics (STEM) fields among women. Eleven female engineers, ranging from college freshmen, seniors, and industry members, were interviewed for their perspectives on how their childhoods, female engineers in media, and STEM outreach affiliations affected their career decisions to pursue engineering. Additionally, a student survey was sent to the general Arizona State University population to gauge interest in different engineering challenges. Major, gender, and first-generation status emerged as affecting factors for high interest in certain engineering challenges. As denoted by the survey, male students showed more interest in "Joy of Living" related challenges, while females were more interested in "Health" and "Sustainability" related challenges. First-generation students showed more neutral attitudes than continuing-generation towards most of the engineering challenges. Interview vignettes and survey results were analyzed to identify implications for K-12 outreach and education efforts.
ContributorsHuber, Erin Grace Ni (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137216-Thumbnail Image.png
Description
Image stabilization is a highly desired feature for many systems involving cameras. A camera stabilizer effectively prevents or compensates for unwanted camera movement to provide this stabilization. The use of stabilized camera technology on board aerial vehicles is one such application where the stabilization can greatly improve the overall capability

Image stabilization is a highly desired feature for many systems involving cameras. A camera stabilizer effectively prevents or compensates for unwanted camera movement to provide this stabilization. The use of stabilized camera technology on board aerial vehicles is one such application where the stabilization can greatly improve the overall capability of the system. The requirements for such a system include a continuous control algorithm and hardware to determine and adjust the camera orientation. The topic of developing an aerial camera control and electronic stabilization system is thus explored in the contents of this paper.
ContributorsJauregui, Joseph (Co-author) / Brown, Steven (Co-author) / Burger, Kevin (Thesis director) / Hansen, Mark (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137414-Thumbnail Image.png
Description
The purpose of this project was to create a modular embedded systems platform that would provide a hands-on lab experience for students learning about embedded systems protocols. The system would be designed to be modular, expandable, and productizable. Its modularity would eliminate errors in the design and make the entire

The purpose of this project was to create a modular embedded systems platform that would provide a hands-on lab experience for students learning about embedded systems protocols. The system would be designed to be modular, expandable, and productizable. Its modularity would eliminate errors in the design and make the entire system more robust. It would also be expandable, which means additional project boards could be created in the future without requiring a complete redesign of the system. And finally, productizing the entire system would allow it to be sold to other universities who may have a similar program that would benefit from a system such as the OCTOPUS.
ContributorsDavis, Mareike (Author) / Burger, Kevin (Thesis director) / Vannoni, Greg (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2013-12
134416-Thumbnail Image.png
Description
Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems

Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems in engineering, such as the dominance of white males in the field and the amount of education needed to become a successful engineer [4]. Therefore, the NAE encourages that the current engineering community begin to expose the younger generations to the real foundation of engineering: problem-solving [4]. The objective of this thesis is to minimize the knowledge gap by assessing the current perception of engineering amongst middle school and high school students and improving it through engaging and interactive presentations and activities that build upon the students’ problem-solving abilities.

The project was aimed towards middle school and high school students, as this is the estimated level where they learn biology and chemistry—key subject material in biomedical engineering. The high school students were given presentations and activities related to biomedical engineering. Additionally, within classrooms, posters were presented to middle school students. The content of the posters were students of the biomedical engineering program at ASU, coming from different ethnic backgrounds to try and evoke within the middle school students a sense of their own identity as a biomedical engineer. To evaluate the impact these materials had on the students, a survey was distributed before the students’ exposure to the materials and after that assesses the students’ understanding of engineering at two different time points. A statistical analysis was conducted with Microsoft Excel to assess the influence of the activity and/or presentation on the students’ understanding of engineering.
ContributorsLlave, Alison Rose (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05