Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 99
147868-Thumbnail Image.png
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsRanganathan, Anirudh (Co-author) / Karthikeyan, Sayish (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsKarthikeyan, Sayish Priya (Co-author) / Ranganathan, Anirudh (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The objective of this experiment was to investigate the correlation between the starting pitch angle of a Dragon Boat paddle and the ensuing total stress and force on the paddle during the first stroke. During the first stroke (i.e., starting at rest) the stress on the paddle can be equated

The objective of this experiment was to investigate the correlation between the starting pitch angle of a Dragon Boat paddle and the ensuing total stress and force on the paddle during the first stroke. During the first stroke (i.e., starting at rest) the stress on the paddle can be equated with the force output. To do this, a paddle was modified with a strain gauge and other equipment, and tests were run varying the pitch angle. The results showed that while the most positive starting angle yielded the highest stress and force on the paddle, there was no discernible trend correlating the angle to the stress. Further experimentation must be run to determine which other factors influence the stress.

ContributorsHeitmann, Kevin Matthew (Author) / Takahashi, Timothy (Thesis director) / Kasbaoui, Mohamed (Committee member) / Materials Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148193-Thumbnail Image.png
Description

This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation

This project explores how modern mobile technology can be used to provide support for domestic violence victims. The goal of the project is to create a proof-of-concept iOS mobile application that maintains a discreet safety front and provides domestic violence victims with resources and safety planning. The design and implementation are disguised as a hair salon app to maintain a low profile on the user’s phone. The HairHelp app features quick exit navigation, a secure database to store a user’s private and personal documents in case of emergency, and a checklist of safety planning measures. The steps taken in this project serve as the foundation for a larger project in the long term.

ContributorsShovkovy, Sophia (Author) / Balasooriya, Janaka (Thesis director) / Wilkey, Douglas (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136477-Thumbnail Image.png
Description
MeetPoint is a project derived from Computer Science with a focus upon applications to mobile. The application is created to provide users with the ability to meet up with certain individuals to accomplish a specific task, in this case studying. The project idea came from the creator wanting to meet

MeetPoint is a project derived from Computer Science with a focus upon applications to mobile. The application is created to provide users with the ability to meet up with certain individuals to accomplish a specific task, in this case studying. The project idea came from the creator wanting to meet up with a friend in order to converse about an upcoming exam. The creator knew where the person lived, but could not easily come up with a location for the two to meet that would be a reasonable distance from both of them. Hence came the idea for a mobile application to complete those actions for the user. The project focuses upon implementation in a school setting in which the meetings would actually take place. For means of this project, the locations were fixed to on campus at Arizona State University. The committee felt that this would scope the project correctly for its two-semester creation while still demonstrating how to fulfill the task at hand. Android is the operating system of choice for the mobile application due to it being Java, which was the most familiar language to the student. MeetPoint provides users with an easy to navigate and familiar front-end while harnessing the power of a database in the back-end. The application hides the intricacies of the back-end from the user in order to better provide a comfortable user experience. A lot of the project was designed around providing a comfortable user experience by keeping the application familiar to the user in that it maintains similarities with other popular mobile applications.
ContributorsWallace, Tyler L (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136678-Thumbnail Image.png
Description
When planning a road trip today, there are solutions that let the user know what comes along their route, but the user is often presented with too much information, which can overwhelm the user. They are provided suggestions all along the route, not just at those times when they would

When planning a road trip today, there are solutions that let the user know what comes along their route, but the user is often presented with too much information, which can overwhelm the user. They are provided suggestions all along the route, not just at those times when they would be needed. RoutePlanner simply takes all that information and only presents that data to the user, that they would need at a particular time. Gas station suggestions would show when the gas tank range is going to be hit soon, and restaurant suggestions would only be shown around lunch time. The iOS app takes in the users origin and destination and provides the user the route as given by GoogleMaps, and then various stop suggestions at their given time. Each route that is obtained, is broken down into a number of steps, which are basically a connection of coordinate points. These coordinate point collections are used to point to a location at a certain distance or duration away from the origin. Given a coordinate, we query the APIs for places of interest and move to the next stop, until the end of the route.
ContributorsDamania, Harsh Abhay (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-12
136604-Thumbnail Image.png
Description
As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has

As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has designed and developed a prototype smartphone application targeting palliative care patients. The application collects symptom data from the patients and presents it to the doctors. This development project serves as a proof-of-concept for the application, and shows how such an application might look and function. Additionally, the project has revealed significant possibilities for the future of the application.
ContributorsGaney, David Howard (Author) / Balasooriya, Janaka (Thesis director) / Lipinski, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136654-Thumbnail Image.png
Description
Many psychology-rooted studies into the games industry seek to identify emotions players experience during gameplay. However, there is a need to extend this kind of research beyond the realm of emotion into more long-term concepts, like satisfaction. This experiment tested whether a specific game mechanic was enjoyable. Other literature has

Many psychology-rooted studies into the games industry seek to identify emotions players experience during gameplay. However, there is a need to extend this kind of research beyond the realm of emotion into more long-term concepts, like satisfaction. This experiment tested whether a specific game mechanic was enjoyable. Other literature has established a way to describe and quantify enjoyability. Using a survey based on that work, this study evaluated the addition of a 'gel gun' to a platforming game. The fun was found to significantly increase players' affective experiences, concentration, and sense of control, all being components of an enjoyable experience. It also exposed some conflicts within the survey that merit investigation. It was concluded that the 'gel gun' feature increased gameplay enjoyability without significantly diminishing any other enjoyable factors. Future work may explore the connections between this feature and specific elements of enjoyment.
ContributorsMints, John (Author) / Meuth, Ryan (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor)
Created2014-12
137148-Thumbnail Image.png
Description
This study aims to showcase the results of a quadrotor model and the mathematical techniques used to arrive at the proposed design. Multicopters have made an explosive appearance in recent years by the controls engineering community because of their unique flight performance capabilities and potential for autonomy. The ultimate goal

This study aims to showcase the results of a quadrotor model and the mathematical techniques used to arrive at the proposed design. Multicopters have made an explosive appearance in recent years by the controls engineering community because of their unique flight performance capabilities and potential for autonomy. The ultimate goal of this research is to design a robust control system that guides and tracks the quadrotor's trajectory, while responding to outside disturbances and obstacles that will realistically be encountered during flight. The first step is to accurately identify the physical system and attempt to replicate its behavior with a simulation that mimics the system's dynamics. This becomes quite a complex problem in itself because many realistic systems do not abide by simple, linear mathematical models, but rather nonlinear equations that are difficult to predict and are often numerically unstable. This paper explores the equations and assumptions used to create a model that attempts to match roll and pitch data collected from multiple test flights. This is done primarily in the frequency domain to match natural frequency locations, which can then be manipulated judiciously by altering certain parameters.
ContributorsDuensing, Jared Christopher (Author) / Takahashi, Timothy (Thesis director) / Garrett, Frederick (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
Description
Fiddlevent is an event searching website written in Ruby on Rails. Fiddlevent enables any person to go online and find local events that interest him. Fiddlevent also enables merchants to post their events online. Fiddlevent explores all challenges of website development, such as project management, database design, user interface design,

Fiddlevent is an event searching website written in Ruby on Rails. Fiddlevent enables any person to go online and find local events that interest him. Fiddlevent also enables merchants to post their events online. Fiddlevent explores all challenges of website development, such as project management, database design, user interface design, deployment and the software development lifecycle. Fiddlevent aims to utilize best practices for website and software development.
ContributorsThornton, Christopher Gordon (Author) / Balasooriya, Janaka (Thesis director) / Nakamura, Mutsumi (Committee member) / Hurst, Charles (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05