Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 69
133613-Thumbnail Image.png
Description
In this article we present a low-cost force-sensing quadrupedal laminate robot platform. The robot has two degrees of freedom on each of four independent legs, allowing for a variety of motion trajectories to be created at each leg, thus creating a rich control space to explore on a relatively low-cost

In this article we present a low-cost force-sensing quadrupedal laminate robot platform. The robot has two degrees of freedom on each of four independent legs, allowing for a variety of motion trajectories to be created at each leg, thus creating a rich control space to explore on a relatively low-cost robot. This platform allows a user to research complex motion and gait analysis control questions, and use different concepts in computer science and control theory methods to permit it to walk. The motion trajectory of each leg has been modeled in Python. Critical design considerations are: the complexity of the laminate design, the rigidity of the materials of which the laminate is constructed, the accuracy of the transmission to control each leg, and the design of the force sensing legs.
ContributorsShuch, Benjamin David (Author) / Aukes, Daniel (Thesis director) / Sodemann, Angela (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132951-Thumbnail Image.png
Description
This project is investigating the impact curvature, buckling, and anisotropy play when used passively to enhance jumping capability. In this paper we employ a curved structure to allow a rigid link to collapse preferentially in one direction when it encounters aerodynamic drag forces. A joint of this nature could be

This project is investigating the impact curvature, buckling, and anisotropy play when used passively to enhance jumping capability. In this paper we employ a curved structure to allow a rigid link to collapse preferentially in one direction when it encounters aerodynamic drag forces. A joint of this nature could be used for passively actuated jump gliding, where wings would collapse immediately on takeoff and passively redeploy during descent, allowing the jumping robot to extend its horizontal range via gliding. A passively actuated joint is simpler and more lightweight than active solutions, allowing for a lighter glider and higher jumps. To test this, several prototype collapsing gliding wings of different diameters were tested by dropping them from a consistent height above the ground and by launching them upwards and recording their initial velocity. A model was constructed in Python using the data gathered through the experiments and was tuned so that its outputs were as close as possible to the experimental results. As expected, increasing the wing diameter increased the total fall time, and increasing the payload mass decreased the total fall time. Orientation of the wings around the vertical axis of the glider relative to the direction of horizontal motion was also found to have an effect on the length of time between when the gliding platform was launched and when it made contact with the ground, with a configuration where the axis between the wings was parallel to the direction of motion granting added stability.
ContributorsLighthouse, Guston Heqian (Author) / Aukes, Daniel (Thesis director) / Sodemann, Angela (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166745-Thumbnail Image.png
Description

An autobiography on my 6 years at ASU as a design student, honors student, interdisciplinary worker, and a team player. Also, the InnovationSpace experience of working in a transdisciplinary team.

ContributorsKozicki, Jeannie (Author) / Hedges, Craig (Thesis director) / Reeves, Scott (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / The Design School (Contributor)
Created2022-05
Description

The Sonoran Desert in the Southwest region of the United States and the Northwest corner of Mexico is defined by low precipitation rates that are episodal, oscillating between years of higher yields than average and then below average levels. Water is essential for life and in the region, the lack

The Sonoran Desert in the Southwest region of the United States and the Northwest corner of Mexico is defined by low precipitation rates that are episodal, oscillating between years of higher yields than average and then below average levels. Water is essential for life and in the region, the lack of water proves an obstacle for people that must be faced to live and thrive there. Yet, millions of people live in this desert region and more people are moving currently. As current water resources are straining not only under increasing population but also with higher frequency and lengths of droughts in the region, water is becoming an important topic for future plans in the Sonoran Desert. However, a vast array of plants and animals have lived under these conditions by adapting to the low precipitation rates. By looking at the common flora and fauna of the region, humans may learn how to better live in the Sonoran Desert through biomimicry, the imitation of life. The natural design and processes of life in the Sonoran Desert can be studied to find ways to conserve, store and collect water for human consumption ensuring longevity within the region and beyond as water insecurity increases globally.

ContributorsGustin, Eden (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
ContributorsGustin, Eden (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
ContributorsGustin, Eden (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05
Description

Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines

Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines and how to optimize learning while following them, Tanagons creates a more comprehensive and engaging learning experience of this complex topic in hopes of preparing children to be more conscious individuals in the mission for sustainability.

ContributorsChiu, Lucas (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Gumus-Ciftci, Hazal (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2023-05
ContributorsChiu, Lucas (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Gumus-Ciftci, Hazal (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2023-05
Description
Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines

Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines and how to optimize learning while following them, Tanagons creates a more comprehensive and engaging learning experience of this complex topic in hopes of preparing children to be more conscious individuals in the mission for sustainability.
ContributorsChiu, Lucas (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Gumus-Ciftci, Hazal (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2023-05
Description
Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines

Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines and how to optimize learning while following them, Tanagons creates a more comprehensive and engaging learning experience of this complex topic in hopes of preparing children to be more conscious individuals in the mission for sustainability.
ContributorsChiu, Lucas (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Gumus-Ciftci, Hazal (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2023-05