Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 49
133363-Thumbnail Image.png
Description
An in-depth analysis on the effects vortex generators cause to the boundary layer separation that occurs when an internal flow passes through a diffuser is presented. By understanding the effects vortex generators demonstrate on the boundary layer, they can be utilized to improve the performance and efficiencies of diffusers and

An in-depth analysis on the effects vortex generators cause to the boundary layer separation that occurs when an internal flow passes through a diffuser is presented. By understanding the effects vortex generators demonstrate on the boundary layer, they can be utilized to improve the performance and efficiencies of diffusers and other internal flow applications. An experiment was constructed to acquire physical data that could assess the change in performance of the diffusers once vortex generators were applied. The experiment consisted of pushing air through rectangular diffusers with half angles of 10, 20, and 30 degrees. A velocity distribution model was created for each diffuser without the application of vortex generators before modeling the velocity distribution with the application of vortex generators. This allowed the two results to be directly compared to one another and the improvements to be quantified. This was completed by using the velocity distribution model to find the partial mass flow rate through the outer portion of the diffuser's cross-sectional area. The analysis concluded that the vortex generators noticeably increased the performance of the diffusers. This was best seen in the performance of the 30-degree diffuser. Initially the diffuser experienced airflow velocities near zero towards the edges. This led to 0.18% of the mass flow rate occurring in the outer one-fourth portion of the cross-sectional area. With the application of vortex generators, this percentage increased to 5.7%. The 20-degree diffuser improved from 2.5% to 7.9% of the total mass flow rate in the outer portion and the 10-degree diffuser improved from 11.9% to 19.2%. These results demonstrate an increase in performance by the addition of vortex generators while allowing the possibility for further investigation on improvement through the design and configuration of these vortex generators.
ContributorsSanchez, Zachary Daniel (Author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135207-Thumbnail Image.png
Description
Situations present themselves in which someone needs to navigate inside of a building, for example, to the exit or to retrieve and object. Sometimes, vision is not a reliable sense of spatial awareness, maybe because of a smoky environment, a dark environment, distractions, etc. I propose a wearable haptic device,

Situations present themselves in which someone needs to navigate inside of a building, for example, to the exit or to retrieve and object. Sometimes, vision is not a reliable sense of spatial awareness, maybe because of a smoky environment, a dark environment, distractions, etc. I propose a wearable haptic device, a belt or vest, that provides haptic feedback to help people navigate inside of a building that does not rely on the user's vision. The first proposed device has an obstacle avoidance component and a navigation component. This paper discussed the challenges of designing and implementing this kind of technology in the context of indoor navigation, where GPS signal is poor. Analyzing accelerometer data for the purpose of indoor navigation and then using haptic cues from a wearable haptic device for the navigation were explored in this project, and the device is promising.
ContributorsBerk, Emily Marie (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134285-Thumbnail Image.png
Description
This experiment used hotwire anemometry to examine the von Kármán vortex street and how different surface conditions affect the wake profile of circular airfoils, or bluff bodies. Specifically, this experiment investigated how the various surface conditions affected the shedding frequency and Strouhal Number of the vortex street as Reynolds Number

This experiment used hotwire anemometry to examine the von Kármán vortex street and how different surface conditions affect the wake profile of circular airfoils, or bluff bodies. Specifically, this experiment investigated how the various surface conditions affected the shedding frequency and Strouhal Number of the vortex street as Reynolds Number is increased. The cylinders tested varied diameter, surface finish, and wire wrapping. Larger diameters corresponded with lower shedding frequencies, rougher surfaces decreased Strouhal Number, and the addition of thick wires to the surface of the cylinder completely disrupted the vortex shedding to the point where there was almost no dominant shedding frequency. For the smallest diameter cylinder tested, secondary dominant frequencies were observed, suggesting harmonics.
ContributorsCoote, Peter John (Author) / Takahashi, Timothy (Thesis director) / White, Daniel (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134292-Thumbnail Image.png
Description
Millions of people every day log onto their computers to play competitive games with others around the world. Each of these players has their own unique personality and their own reasons for playing. To explore the relationship between player personalities and gameplay, this study asked participants to report their Myers-Briggs

Millions of people every day log onto their computers to play competitive games with others around the world. Each of these players has their own unique personality and their own reasons for playing. To explore the relationship between player personalities and gameplay, this study asked participants to report their Myers-Briggs sixteen personality types and complete a survey that asked them questions about their behavior while games playing competitively online including their preferred in-game archetype and questions about how they interact with other players online. The survey also included the Grit Scale test, which which was intended to explore players' perseverance. Nearly 700 people participated in the study and all responses were analyzed based on their Myers-Briggs' personality type. While this study revealed that Myers-Briggs' personality type alone cannot determine a player's mindset while playing online, it was found to be an indicator of how they feel about socializing with others online. The implications of these results are discussed in this paper.
ContributorsKeyvani, Kurosh (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134293-Thumbnail Image.png
Description
Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being

Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being subjective, unreliable, inaccurate, and susceptible to deliberate manipulation. Furthermore, critics also believe that the administrator of the test also influences the outcome as well. As a result, the polygraph machine, the contemporary device used for lie detection, has come under scrutiny when used as evidence in the courts. The purpose of this study is to use three entirely different tools and concepts to determine whether eye tracking systems, electroencephalogram (EEG), and Facial Expression Emotion Analysis (FACET) are reliable tools for lie detection. This study found that certain constructs such as where the left eye is looking at in regard to its usual position and engagement levels in eye tracking and EEG respectively could distinguish between truths and lies. However, the FACET proved the most reliable tool out of the three by providing not just one distinguishing variable but seven, all related to emotions derived from movements in the facial muscles during the present study. The emotions associated with the FACET that were documented to possess the ability to distinguish between truthful and lying responses were joy, anger, fear, confusion, and frustration. In addition, an overall measure of the subject's neutral and positive emotional expression were found to be distinctive factors. The implications of this study and future directions are discussed.
ContributorsSeto, Raymond Hua (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134301-Thumbnail Image.png
Description
The purpose of this paper is to discover what geometric characteristics of a wing and airfoil help to maximize leading edge suction through experimental testing. Three different stages of testing were conducted: a Proof of Concept, a Primary Experiment, and a Secondary Experiment. The Proof of Concept shows the effects

The purpose of this paper is to discover what geometric characteristics of a wing and airfoil help to maximize leading edge suction through experimental testing. Three different stages of testing were conducted: a Proof of Concept, a Primary Experiment, and a Secondary Experiment. The Proof of Concept shows the effects of leading edge suction and the benefits it can posses. The Primary Experiment provided inconclusive data due to inaccuracies in the equipment. As a result, the Secondary Experiment was conducted in order to reduce the error effect as much as possible on the data. Unfortunately the Secondary Experiment provided inaccurate data as well. However, this paper does provide enough evidence to begin to question some of the long held beliefs regarding theoretical induced drag and whether it is true under all circumstances, or if it is only a good approximation for airfoils with full leading-edge suction effects.
ContributorsMorrow, Martin (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / School for the Engineering of Matter, Transport, and Energy (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
136586-Thumbnail Image.png
Description
The goal of the ANLGE Lab's AR assembly project is to create/save assemblies as well as to replicate assemblies later with real-time AR feedback. In this iteration of the project, the SURF algorithm was used to provide object detection for 5 featureful objects (a Lego girl piece, a Lego guy

The goal of the ANLGE Lab's AR assembly project is to create/save assemblies as well as to replicate assemblies later with real-time AR feedback. In this iteration of the project, the SURF algorithm was used to provide object detection for 5 featureful objects (a Lego girl piece, a Lego guy piece, a blue Lego car piece, a window piece, and a fence piece). Functionality was added to determine the location of these 5 featureful objects within a frame as well by using the SURF keypoints associated with detection. Finally, the feedback mechanism by which the system detects connections between objects was improved to consider the size of the blocks in determining connections rather than using static values. Additional user features such as adding a new object and using voice commands were also implemented to make the system more user friendly.
ContributorsSelvam, Nikil Panneer (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136540-Thumbnail Image.png
Description
Since the early 1990's, researchers have been looking at intersections between education and music. After a highly popular study correlating listening to Mozart to temporary increases in spatial reasoning, many other researchers tried to find a link between different musical genres and learning outcomes. Using three musical treatments (Pop, classical,

Since the early 1990's, researchers have been looking at intersections between education and music. After a highly popular study correlating listening to Mozart to temporary increases in spatial reasoning, many other researchers tried to find a link between different musical genres and learning outcomes. Using three musical treatments (Pop, classical, silence), this study had subjects (N=34) complete a reading-based task whereupon they were tested on their comprehension. Using a suite of sensors, data was collected to analyze the participants' emotions and affect while they read from an educational psychology textbook. The present study has two major focuses: They detail whether (1) changes in musical condition affect learning outcomes and (2) whether changes in musical condition affect emotional outcomes. The popular conception that listening to classical music makes you smarter was proven false long ago, but there may actually be some merit to using music to assist one in studying. While there were no significant changes in test scores depending on musical condition; frustration levels were significantly lower for those who listened to classical instead of pop music.
ContributorsPaley, Benjamin Henry (Author) / Atkinson, Robert (Thesis director) / Feisst, Sabine (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2015-05
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
137262-Thumbnail Image.png
Description
The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to

The thesis is an investigation on current regulations of commercial aircraft landing and take-off procedures and an analysis of potential weaknesses within the regulatory system for commercial aerospace. To determine such flaws, an area of worse-case scenarios with regard to the aforementioned flight operations was researched. The events selected to best-depict these scenarios where incidents of aircraft overrunning the runway, referred to as runway excursions. A case-study conducted of 44 federal investigations of runway excursions produced data indicating four influential factors within these incidents: weather, pilot error, instrument malfunction, and runway condition. Upon examination, all but pilot error appeared to have federal enforcement to diminish the occurrence of future incidents. This is a direct result of the broad possibilities that make up this factor. The study then searched for a consistent fault within the incidents with the results indicating an indirect relationship of thrust reversers, a technique utilized by pilots to provide additional braking, to these excursions. In cases of thrust reverser failure, pilots' over-reliance on the system lead to time being lost from the confusion produced by the malfunction, ultimately resulting in several different runway excursions. The legal implication with the situation is that current regulations are ambiguous on the subject of thrust reversers and thus do not properly model the usage of the technique. Thus, to observe the scope of danger this ambiguity presents to the industry, the relationship of the technique to commercial aerospace needed to be determined. Interviews were set-up with former commercial pilots to gather data related to the flight crew perspective. This data indicated that thrust reversers were actively utilized by pilots within the industry for landing operations. The problem with the current regulations was revealed that the lack of details on thrust reverser reflected a failure of regulations to model current industry flight operations. To improve safety within the industry, new data related to thrust reverser deployment must be developed and enforced to determine appropriate windows to utilize the technique, thus decreasing time lost in confusion that results from thrust reversers malfunction. Future work would be based on producing simulations to determine said data as well as proposing the policy suggestions produced by this thesis.
ContributorsCreighton, Andrew John (Author) / Takahashi, Timothy (Thesis director) / Marchant, Gary (Committee member) / Kimberly, Jimmy (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-05