Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
147646-Thumbnail Image.png
Description

Background: Household activities are responsible for up to 80% of direct and indirect greenhouse gas emissions in the United States. These greenhouse gas emissions come from activities including actions taken in relation to food, energy, and water (FEW) resource consumption. Therefore, actions taken at a household level have the potential

Background: Household activities are responsible for up to 80% of direct and indirect greenhouse gas emissions in the United States. These greenhouse gas emissions come from activities including actions taken in relation to food, energy, and water (FEW) resource consumption. Therefore, actions taken at a household level have the potential to significantly reduce greenhouse gas emissions. A game-based learning approach can be used to educate youth on what actions they can take around their household to reduce their carbon footprint. <br/>Aim: FEWS for change is a first player role-playing game developed to educate high school students on how their actions impact the FEW resources and carbon emissions. The game also aims to measure how player’s beliefs and worldview effect their game play regarding sustainability and the environment. <br/>Methods: We developed the FEWS (Food, Energy, and Water Systems) for Change role-playing game based on transdisciplinary research of the food, energy, and water nexus, social, economic, and environmental factors. We piloted the game with a few students for initial results and will have a high school classroom pilot the game in mid-May.<br/>Preliminary Results: Results from the 4 participants demonstrated achievement of the learning goal of the pilot testing. This is objective was met by measuring the players improvement on the postsurvey compared to the presurvey. Due to limitations of time and virtual facilitation of this game, the other two learning objectives could not be measured in this initial pilot because not all post-game activities were included which are needed to measure the other learning objectives. When the game is piloted in mid-May, the other two learning objectives will be tested and measured.

ContributorsFielding, Raven (Author) / Agusdinata, Datu Buyung (Thesis director) / Lukosch, Heide (Committee member) / School of Sustainability (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130892-Thumbnail Image.png
Description
Over the past decades, rare earth elements (REE) have become a crucial backbone to the functioning of modern technology infrastructure, particularly due to their inclusion within NdFeB magnets which power technologies such as hard disk drives and wind turbines. However, mining and extraction of REEs pose significant environmental and human

Over the past decades, rare earth elements (REE) have become a crucial backbone to the functioning of modern technology infrastructure, particularly due to their inclusion within NdFeB magnets which power technologies such as hard disk drives and wind turbines. However, mining and extraction of REEs pose significant environmental and human health risks, thus signaling a need for more sustainable methods of sourcing. This research aims to compare the impact and effectiveness of three recycling processes for decommissioned NdFeB magnets sourced from end-of-life wind turbines, as well as consider strategies for developing these processes on an industrial scale. A material flow analysis (MFA) has been conducted to determine comparable input and output factors for two types of laboratory-scale recycling methods, molten salt electrolysis and hydrometallurgy, and one industrial-scale method, magnet-to-magnet. Following this, an impact analysis of potential industrial level magnet recycling operations for molten salt electrolysis and hydrometallurgy was conducted. The results show that molten salt electrolysis had the highest levels of impact for global warming, ozone depletion, and energy usage of the three methods when scaled on an industrial level. Hydrometallurgy had relatively low energy usage and emissions impacts but required large amounts of water and produced high levels of wastewater. The magnet-to-magnet process showed promising impact results in comparison with the alternate two methods, but further development needs to be done to circumvent the continued use of virgin REE in the final production steps for novel magnets. Overall, it is recommended that locations of recycling operations should be pursued for each process relative to energy and water usage needs, as well as transportation distance from wind farms.
ContributorsSavel, Cassandra Deanne (Author) / Agusdinata, Datu Buyung (Thesis director) / Iloeje, Nwike (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12