Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
132015-Thumbnail Image.png
Description
The mean age of the world’s population is rapidly increasing and with that growth in an aging population a large number of elderly people are in need of walking assistance. In addition, a number of medical conditions contribute to gait disorders that require gait rehabilitation. Wearable robotics can be used

The mean age of the world’s population is rapidly increasing and with that growth in an aging population a large number of elderly people are in need of walking assistance. In addition, a number of medical conditions contribute to gait disorders that require gait rehabilitation. Wearable robotics can be used to improve functional outcomes in the gait rehabilitation process. The ankle push-off phase of an individual’s gait is vital to their ability to walk and propel themselves forward. During the ankle push-off phase of walking, plantar flexors are required to providing a large amount of force to power the heel off the ground.

The purpose of this project is to improve upon the passive ankle foot orthosis originally designed in the ASU’s Robotics and Intelligent Systems Laboratory (RISE Lab). This device utilizes springs positioned parallel to the user’s Achilles tendon which store energy to be released during the push off phase of the user’s gait cycle. Goals of the project are to improve the speed and reliability of the ratchet and pawl mechanism, design the device to fit a wider range of shoe sizes, and reduce the overall mass and size of the device. The resulting system is semi-passive and only utilizes a single solenoid to unlock the ratcheting mechanism when the spring’s potential force is required. The device created also utilizes constant force springs rather than traditional linear springs which allows for a more predictable level of force. A healthy user tested the device on a treadmill and surface electromyography (sEMG) sensors were placed on the user’s plantar flexor muscles to monitor potential reductions in muscular activity resulting from the assistance provided by the AFO device. The data demonstrates the robotic shoe was able to assist during the heel-off stage and reduced activation in the plantar flexor muscles was evident from the EMG data collected. As this is an ongoing research project, this thesis will also recommend possible design upgrades and changes to be made to the device in the future. These upgrades include utilizing a carbon fiber or lightweight plastic frame such as many of the traditional ankle foot-orthosis sold today and introducing a system to regulate the amount of spring force applied as a function of the force required at specific times of the heel off gait phase.
ContributorsSchaller, Marcus Frank (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131372-Thumbnail Image.png
Description
In the last decade, a large variety of algorithms have been developed for use in object tracking, environment mapping, and object classification. It is often difficult for beginners to fully predict the constraints that multirotors place on machine vision algorithms. The purpose of this paper is to explain

In the last decade, a large variety of algorithms have been developed for use in object tracking, environment mapping, and object classification. It is often difficult for beginners to fully predict the constraints that multirotors place on machine vision algorithms. The purpose of this paper is to explain some of the types of algorithms that can be applied to these aerial systems, why the constraints for these algorithms exist, and what could be done to mitigate them. This paper provides a summary of the processes involved in a popular filter-based tracking algorithm called MOSSE (Minimum Output Sum of Squared Error) and a particular implementation of SLAM (Simultaneous Localization and Mapping) called LSD SLAM.
ContributorsVan Hazel, Colton (Author) / Zhang, Wenlong (Thesis director) / Yang, Yezhou (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131400-Thumbnail Image.png
Description
For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods

For the basis of this project, a particular interest is taken in soft robotic arms for the assistance of daily living tasks. A detailed overview and function of the soft robotic modules comprised within the soft robotic arm will be the main focus. In this thesis, design and fabrication methods of fabric reinforced textile actuators (FRTAs) have their design expanded. Original design changes to the actuators that improve their performance are detailed in this report. This report also includes an explanation of how the FRTA’s are made, explaining step by step how to make each sub-assembly and explain its function. Comparisons between the presented module and the function of the soft poly limb from previous works are also expanded. Various forms of testing, such as force testing, range of motion testing, and stiffness testing are conducted on the soft robotic module to provide insights into its performance and characteristics. Lastly, present plans for various forms of future work and integration of the soft robotic module into a full soft robotic arm assembly are discussed.
ContributorsSeidel, Sam (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05