Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
131635-Thumbnail Image.png
Description
There is an increasing interest in developing thermo-responsive polymers for treating aneurysms. In this thesis project, the potential for poly(NIPAAm-co-JAAm-co-HEMA-Acrylate) (PNJHAc) as a treatment method for brain aneurysms was investigated. Five different batches of polymer were synthesized, purified, lyophilized, and characterized using nuclear magnetic resonance and cloud point techniques over

There is an increasing interest in developing thermo-responsive polymers for treating aneurysms. In this thesis project, the potential for poly(NIPAAm-co-JAAm-co-HEMA-Acrylate) (PNJHAc) as a treatment method for brain aneurysms was investigated. Five different batches of polymer were synthesized, purified, lyophilized, and characterized using nuclear magnetic resonance and cloud point techniques over the course of several months. Two were tested in aneurysm models. Of these five batches, there were two that showed promise as liquid embolic agents for endovascular embolization.
ContributorsLoui, Michelle (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131784-Thumbnail Image.png
Description
In an embolization therapy, a material is injected into a vessel to block blood flow. While this therapy is useful in starving cancerous cells it can be dangerous, with some blockades in the brain dislodging and causing strokes or blindness. Currently, embolic materials on the market such as metal coils,

In an embolization therapy, a material is injected into a vessel to block blood flow. While this therapy is useful in starving cancerous cells it can be dangerous, with some blockades in the brain dislodging and causing strokes or blindness. Currently, embolic materials on the market such as metal coils, balloons, and liquid embolic agents do not have a quick removal procedure. An ultrasound cleavable material could be removed in an emergency situation without invasive surgery. The primary goal of this research is to design and synthesize a polymer that can be broken down by high intensity focused ultrasound (HIFU). Initially, we have tested the ultrasound sensitive qualities on PPODA-QT hydrogel, a common embolic agent, but the gel showed no physical change after HIFU exposure. It is theorized that PNIPAAm combined with HIFU sensitive monomers can develop a temperature and ultrasound sensitive embolic agent. In our studies, poly(NIPAAm-co-tBa) had a slight lower critical solution temperature (LCST) change of about 2˚C from before to after HIFU while the study with poly(NIPAAm-co-ACL-BME) and PPODA-QT showed no change in LCST.
ContributorsLein, Karolena (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131712-Thumbnail Image.png
Description
NIPAAm co-DEAEMA hydrogels are a potential solution for sustained, local delivery of ketorolac tromethamine. Current methods of postoperative pain management, such as local anesthetics, NSAIDs, and opioids, can be improved by minimizing side effects while still effectively treating severe and extreme pain. Though high doses of ketorolac can be toxic,

NIPAAm co-DEAEMA hydrogels are a potential solution for sustained, local delivery of ketorolac tromethamine. Current methods of postoperative pain management, such as local anesthetics, NSAIDs, and opioids, can be improved by minimizing side effects while still effectively treating severe and extreme pain. Though high doses of ketorolac can be toxic, sustained, local delivery via hydrogels offers a promising solution. Four ketorolac release studies were conducted using PNDJ hydrogels formulated by Sonoran Biosciences. The first two studies tested a range of JAAm concentration between 1.4 and 2.2 mole percent. Both had high initial release rates lasting less than 7 days and appeared to be unaffected by JAAm content. Tobramycin slowed down the release of ketorolac but was unable to sustain release for more than 6 days. Incorporating DEAEMA prolonged the release of ketorolac for up to 14 days with significant reductions in initial burst release rate. Low LCST of NIPAAM co-DEAEMA polymer is problematic for even drug distribution and future in vivo applications.
ContributorsHui, Nathan (Author) / Vernon, Brent (Thesis director) / Heffernan, John (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131760-Thumbnail Image.png
Description
This thesis creative project shares a food and travel blog through a published website that follows my friends and I while we travel through North America reviewing foods that are found in certain areas. This internet blog outlines local cuisines and what makes them unique to certain locations.
Through my personal

This thesis creative project shares a food and travel blog through a published website that follows my friends and I while we travel through North America reviewing foods that are found in certain areas. This internet blog outlines local cuisines and what makes them unique to certain locations.
Through my personal travels and peer interviews, I have found that this project gave me the opportunity to expand my knowledge on different cultures and regions of the North America and explore how local foods contribute to the cultures in that setting. Additionally, this thesis helped me self-teach myself how to develop a fully published website and practice my web design skills.
ContributorsShabtai, Bat-El Eden (Author) / Vernon, Brent (Thesis director) / Sobrado, Michael (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
In terms of overall athleticism, other than the obvious extremities that take on more skillful duties in performance (arms, legs, fingers ie.), the back, specifically lower, is pivotal in athletic movement. The main bolstering force in the lower back is the lumbar vertebrae, which on the upper end are connected

In terms of overall athleticism, other than the obvious extremities that take on more skillful duties in performance (arms, legs, fingers ie.), the back, specifically lower, is pivotal in athletic movement. The main bolstering force in the lower back is the lumbar vertebrae, which on the upper end are connected to the thoracic portion of the spine, and on the lower end transform into the various processes of the sacrum. The lower back is highly involved in bending and stabilizing during athletic movement, while also being favorably responsible for not only producing but absorbing force as well. Men’s Football has the highest rate of occurrence in injuries compared to all other collegiate sports (Hassebrock 2019). This is a product of the various specificities of the game of football such as groundbreaking speed and strength, along with some psychological group-centered constructs. In survey findings, 83% healthcare professionals say that the best active treatment plan is strengthening the core muscles. While in terms of natural and technological treatments like acupuncture, contrast immersion, and electrical stimulation, there wasn’t a definitive methodology proven to be superior to the others. Allowing for the healthcare professional to be creative in their combination of treatments, as long as core strengthening is primarily targeted.
ContributorsWilliams, Kyle Ellis (Author) / Vernon, Brent (Thesis director) / Chhabra, Anikar (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05