Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 7 of 7
131408-Thumbnail Image.png
Description
Advancements in the field of design and control of lower extremity robotics requires a comprehensive understanding of the underlying mechanics of the human ankle. The ankle joint acts as an essential interface between the neuromuscular system of the body and the physical world, especially during locomotion. This paper investigates how

Advancements in the field of design and control of lower extremity robotics requires a comprehensive understanding of the underlying mechanics of the human ankle. The ankle joint acts as an essential interface between the neuromuscular system of the body and the physical world, especially during locomotion. This paper investigates how the modulation of ankle stiffness is altered throughout the stance phase of the gait cycle depending on the environment the ankle is interacting with. Ten young healthy subjects with no neurological impairments or history of ankle injury were tested by walking over a robotic platform which collected torque and position data. The platform performed a perturbation on the ankle at 20%, 40%, and 60% of their stance phase in order to estimate ankle stiffness and evaluate if the environment plays a role on its modulation. The platform provided either a rigid environment or a compliant environment in which it was compliant and deflected according to the torque applied to the platform. Subjects adapted in different ways to achieve balance in the different environments. When comparing the environments, subjects modulated their stiffness to either increase, decrease, or remain the same. Notably, stiffness as well as the subjects’ center of pressure was found to increase with time as they transitioned from late loading to terminal stance (heel strike to toe-off) regardless of environmental conditions. This allowed for a model of ankle stiffness to be developed as a function of center of pressure, independent of whether a subject is walking on the rigid or compliant environment. The modulation of stiffness parameters characterized in this study can be used in the design and control of lower extremity robotics which focus on accurate biomimicry of the healthy human ankle. The stiffness characteristics can also be used to help identify particular ankle impairments and to design proper treatment for individuals such as those who have suffered from a stroke or MS. Changing environments is where a majority of tripping incidents occur, which can lead to significant injuries. For this reason, studying healthy ankle behavior in a variety of environments is of particular interest.
ContributorsBliss, Clayton F (Author) / Lee, Hyunglae (Thesis director) / Marvi, Hamid (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Each year, the average vehicle contributes 4.6 metric tons of carbon dioxide into the atmosphere [1]. These gases contribute to around 30,000 premature deaths each year [2] and are linked to in the increase in cases of Asthma. Human health is further impacted by the increase of greenhouse gasses in

Each year, the average vehicle contributes 4.6 metric tons of carbon dioxide into the atmosphere [1]. These gases contribute to around 30,000 premature deaths each year [2] and are linked to in the increase in cases of Asthma. Human health is further impacted by the increase of greenhouse gasses in the atmosphere. Rays from the sun travel to the Earth where they are absorbed. Absorbing the sun’s rays heats up the Earth which is then radiated into space. Greenhouse gasses inhibit this process much like the glass walls in a greenhouse. As a result, the temperature of the Earth steadily increases. The greenhouse effect is dangerous because it can be linked to natural disasters, rising ocean levels, and extinction of species. One of the biggest contributors to the greenhouse effect is burning fossil fuels. Powerplants, agriculture, and transportation are some of the largest contributors to the increase of atmospheric carbon dioxide. To mitigate the effects of transportation, car companies have invested into production of alternative and renewable fuels for their products. One of the sources which has gained popularity recently, is the use of electricity to power our vehicles. Tesla has spearheaded the electric car movement and is largely responsible for this beneficial shift. One issue with this approach is that a majority, around 76.3%, of Americans drive alone on their commute [13]. The market in its current state encourages inefficient transportation due to the lack of alternatives. While motorcycles may offer a more eco-friendly and economical approach to cars, many are afraid of potential hazards of using this mode of transportation. The introduction of electric bikes offers an interesting approach to improving this efficiency and safety issue. The wide availability to customers offers an alternative which pushes the traditional distance limits for commuting on a bicycle. Since the market is relatively new, several issues pose challenges to consumers. This research aims to clarify and analyze the electric bike market in order to supply a potential customer with the tools needed to acquire a high quality and reasonably price bike.
ContributorsFriedrich, Collin Anthony (Author) / Lee, Hyunglae (Thesis director) / Lacy, Gerald (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131906-Thumbnail Image.png
Description
The maximal amount of oxygen a person’s body can use while exercising is their VO2max. It is important to test VO2max in chronic stroke survivors who experience stroke-related deficits. The American College of Sports Medicine defines criteria for determining if a VO2max was reached. These criteria appear not to be

The maximal amount of oxygen a person’s body can use while exercising is their VO2max. It is important to test VO2max in chronic stroke survivors who experience stroke-related deficits. The American College of Sports Medicine defines criteria for determining if a VO2max was reached. These criteria appear not to be applicable for this population. We explored an alternative set of criteria that appears more appropriate. Criteria for VO2max testing post-stroke should be further tested and defined.
ContributorsBauer, Rebecca Ellen (Author) / Holzapfel, Simon (Thesis director) / Bosch, Pamela (Committee member) / College of Health Solutions (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The intergroup contact theory purports positive effects of intergroup contact on both implicit and explicit attitudes. Implicit attitudes refer to the lack of awareness of the attitude, whereas explicit attitudes are conscious to each individual. The purpose of this study was to examine the effects of direct interaction with people

The intergroup contact theory purports positive effects of intergroup contact on both implicit and explicit attitudes. Implicit attitudes refer to the lack of awareness of the attitude, whereas explicit attitudes are conscious to each individual. The purpose of this study was to examine the effects of direct interaction with people with intellectual disabilities on both the conscious and unconscious attitudes of college students without intellectual disabilities. The intergroup contact was accomplished through the Exercise Program for Adults with Down Syndrome (ExDS) at Arizona State University (ASU). ExDS is a semester long program integrating ASU students with adults with Down syndrome to design and perform workouts in a buddy system twice a week. ASU students enrolled in unrelated on-ground courses served as control participants. Implicit attitudes were tested using the Implicit Association Task at the beginning and end of the semester. Explicit attitudes were also tested using a self-report questionnaire--Community Living Attitudes Scale-ID version before and after enrollment in the program. Results were analyzed using a two-way ANOVA, where the interaction effects were statistically insignificant for both the IAT and CLAS-ID. Limitations included inconsistencies in the data collection process, the type of contact with those with intellectual disabilities, possible testing effects of learning both measures pre- and post- testing and a small sample size. Further research is necessary to determine the most effective way to measure implicit and explicit biases to those with intellectual disabilities.
ContributorsHightower, Tristany Fayeth (Author) / Holzapfel, Simon (Thesis director) / Tran, Alisa (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131921-Thumbnail Image.png
Description
Physical therapy patients still receive their plan of care onto a piece of paper when there are hundreds of engaging physical therapy exercise videos on the internet. These exercise videos are way more appealing to watch and physical therapists should consider delivering Home Exercise Programs (HEP) digitally. There are apps

Physical therapy patients still receive their plan of care onto a piece of paper when there are hundreds of engaging physical therapy exercise videos on the internet. These exercise videos are way more appealing to watch and physical therapists should consider delivering Home Exercise Programs (HEP) digitally. There are apps and online services such as Physioadvisor, Physprac app, Anterior Cruciate Ligament repair app, and work-out apps for people to create their own plan of care and are easily accessible with any electronic device. Most people are receiving information and learning through a lit screen anyways so it may only be a matter of time before people start using these resources instead of a physical therapist. Physical Therapists need to provide better resources for their patients and an app may be all they need. Figures of the results of the Qualtrics survey both Physical Therapists and Patient responses and were provided. A data analysis of each question and responses were interpreted to determine whether patients and physical therapists would like to use a physical therapy app as part of their rehab program. A Physiotherapy research journal with Switzerland researchers conducted a case study in a hospital and determined whether a HEP app testing was effective for patients to utilize.
ContributorsChang, Cheng H. (Author) / Holzapfel, Simon (Thesis director) / Peterson, Daniel (Committee member) / College of Health Solutions (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131841-Thumbnail Image.png
Description
This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft

This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft robotic ankle-foot orthosis (SR-AFO) exosuit to aid in supporting the human ankle in the inversion/eversion directions. This design aims to assist individuals affected with chronic ankle instability (CAI) or other impairments to the ankle joint. The MAVS design is made from compliant fabric materials, layered and constrained by thin rigid retainers to prevent volume increase during actuation. The design was optimized to provide the greatest stiffness and least deflection for a beam positioned as a cantilever with a point load. The design of the MAVS took into account passive stiffness of the actuator when combining rigid and compliant materials so that stiffness is maximized when inflated and minimal when passive. An analytic model of the MAVS was created to evaluate the effects in stiffness observed by varying the ratio in length between the rigid pieces and the soft actuator. The results from the analytic model were compared to experimentally obtained results of the MAVS. The MAVS with the greatest stiffness was observed when the gap between the rigid retainers was smallest and the rigid retainer length was smallest. The MAVS design with the highest stiffness at 100 kPa was determined, which required 26.71 ± 0.06 N to deflect the actuator 20 mm, and a resulting stiffness of 1,335.5 N/m and 9.1% margin of error from the model predictions.
ContributorsHertzell, Tiffany (Author) / Lee, Hyunglae (Thesis director) / Sugar, Thomas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132073-Thumbnail Image.png
Description
This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the

This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the different directions of motion. The range of damping applied was selected based on the known inherent damping of the human ankle, ensuring that the coupled system became positively damped, and therefore stable. Human experiments were performed to understand and quantify the effects of the variable damping controller on the human user. Within the study, the human subjects performed a target reaching exercise while the ankle robot provided the system with constant positive, constant negative, or variable damping. These three damping conditions could then be compared to analyze the performance of the system. The following performance measures were selected: maximum speed to quantify agility, maximum overshoot to quantify stability, and muscle activation to quantify effort required by the human user. Maximum speed was found to be statistically the same in the variable damping controller and the negative damping condition and to be increased from positive damping controller to variable damping condition by 57.9%, demonstrating the agility of the system. Maximum overshoot was found to significantly decrease overshoot from the negative damping condition to the variable damping controller by 39.6%, demonstrating an improvement in system stability with the variable damping controller. Muscle activation results showed that the variable damping controller required less effort than the positive damping condition, evidenced by the decreased muscle activation of 23.8%. Overall, the study demonstrated that a variable damping controller can balance the trade-off between agility and stability in human-robot interactions and therefore has many practical implications.
ContributorsArnold, James Michael (Author) / Lee, Hyunglae (Thesis director) / Yong, Sze Zheng (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12