Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
131208-Thumbnail Image.png
Description
In this project, I investigated the impact of virtual reality on memory retention. The investigative approach to see the impact of virtual reality on memory retention, I utilized the memorization technique called the memory palace in a virtual reality environment. For the experiment, due to Covid-19, I was forced to

In this project, I investigated the impact of virtual reality on memory retention. The investigative approach to see the impact of virtual reality on memory retention, I utilized the memorization technique called the memory palace in a virtual reality environment. For the experiment, due to Covid-19, I was forced to be the only subject. To get effective data, I tested myself within randomly generated environments with a completely unique set of objects, both outside of a virtual reality environment and within one. First I conducted a set of 10 tests on myself by going through a virtual environment on my laptop and recalling as many objects I could within that environment. I recorded the accuracy of my own recollection as well as how long it took me to get through the data. Next I conducted a set of 10 tests on myself by going through the same virtual environment, but this time with an immersive virtual reality(VR) headset and a completely new set of objects. At the start of the project it was hypothesized that virtual reality would result in a higher memory retention rate versus simply going through the environment in a non-immersive environment. In the end, the results, albeit with a low test rate, leaned more toward showing the hypothesis to be true rather than not.
ContributorsDu, Michael Shan (Author) / Kobayashi, Yoshihiro (Thesis director) / McDaniel, Troy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131675-Thumbnail Image.png
Description
The Migration Framework and Simulator is a combination of C# framework / library and Unity simulation tool used for studying basic migration patterns across the US. Users interact with the
Unity simulation tool by implementing political policies or adjusting values via sliders, buttons, etc., which will alter the values in the

The Migration Framework and Simulator is a combination of C# framework / library and Unity simulation tool used for studying basic migration patterns across the US. Users interact with the
Unity simulation tool by implementing political policies or adjusting values via sliders, buttons, etc., which will alter the values in the framework. The user can then use the simulation interface to view different estimated population values for categories of people, such as regional differences, education levels, and more.
ContributorsLarsen, Joseph (Co-author) / Spangler, Braydon (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132671-Thumbnail Image.png
Description
While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large

While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large well tagged datasets for their models. In this project I attempt to apply concepts in NLP and procedural generation to a system which can generate a rough scene estimation of a natural language description in a 3d environment from a free use database of models. The primary objective of this system, rather than a completely accurate representation, is to generate a useful or interesting result. The use of such a system comes in assisting designers who utilize 3d scenes or environments for their work.
ContributorsHann, Jacob R. (Author) / Kobayashi, Yoshihiro (Thesis director) / Srivastava, Siddharth (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133010-Thumbnail Image.png
Description
SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice Service technologies to provide a new and improved way to

SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice Service technologies to provide a new and improved way to teach users about the different types of first aid kit items and how to treat minor injuries, step by step. Using Alexa and RaspberryPi, SmartAid was designed as an added attachment to first aid kits. Alexa Services were installed into a RaspberryPi to create a custom Amazon device, and from there, using the Alexa Interaction Model and the Lambda function services, SmartAid was developed. After the designing and coding of the application, a user guide was created to provide users with information on what items are included in the first aid kit, what types of injuries can be treated through first aid, and how to use SmartAid. The
application was tested for its usability and practicality by a small sample of students. Users provided suggestions on how to make the application more versatile and functional, and confirmed that the application made first aid easier and was something that they could see themselves using. While this application is not aimed to replace the current physical guide solution completely, the findings of this project show that SmartAid has potential to stand in as an improved, easy to use, and convenient alternative for first aid guidance.
ContributorsHasan, Bushra Anwara (Author) / Kobayashi, Yoshihiro (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132028-Thumbnail Image.png
Description
This project is to design an idle game and evaluate players’ enjoyment corresponding to
different currency rates. In the game, the player can control a group of heroes against another
set of heroes. In this project, two different currency rates are examined. The player can get
money more easily in a lower currency

This project is to design an idle game and evaluate players’ enjoyment corresponding to
different currency rates. In the game, the player can control a group of heroes against another
set of heroes. In this project, two different currency rates are examined. The player can get
money more easily in a lower currency rate. Two groups of players are formed, and there are 5
players in group A and group B respectively. Players in group A are assigned to play the idle
game with a higher currency rate and players in group B are assigned to play the game with a
lower currency rate. The idle game is created by using Unity and C# language. The feedback
from the players is collected by asking them to finish an 11-question survey. The analysis is
based on the game’s currency rate and survey results. It is concluded that a higher currency rate
lowers players’ enjoyment of the idle game.
ContributorsYang, Yijian (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12