Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
133363-Thumbnail Image.png
Description
An in-depth analysis on the effects vortex generators cause to the boundary layer separation that occurs when an internal flow passes through a diffuser is presented. By understanding the effects vortex generators demonstrate on the boundary layer, they can be utilized to improve the performance and efficiencies of diffusers and

An in-depth analysis on the effects vortex generators cause to the boundary layer separation that occurs when an internal flow passes through a diffuser is presented. By understanding the effects vortex generators demonstrate on the boundary layer, they can be utilized to improve the performance and efficiencies of diffusers and other internal flow applications. An experiment was constructed to acquire physical data that could assess the change in performance of the diffusers once vortex generators were applied. The experiment consisted of pushing air through rectangular diffusers with half angles of 10, 20, and 30 degrees. A velocity distribution model was created for each diffuser without the application of vortex generators before modeling the velocity distribution with the application of vortex generators. This allowed the two results to be directly compared to one another and the improvements to be quantified. This was completed by using the velocity distribution model to find the partial mass flow rate through the outer portion of the diffuser's cross-sectional area. The analysis concluded that the vortex generators noticeably increased the performance of the diffusers. This was best seen in the performance of the 30-degree diffuser. Initially the diffuser experienced airflow velocities near zero towards the edges. This led to 0.18% of the mass flow rate occurring in the outer one-fourth portion of the cross-sectional area. With the application of vortex generators, this percentage increased to 5.7%. The 20-degree diffuser improved from 2.5% to 7.9% of the total mass flow rate in the outer portion and the 10-degree diffuser improved from 11.9% to 19.2%. These results demonstrate an increase in performance by the addition of vortex generators while allowing the possibility for further investigation on improvement through the design and configuration of these vortex generators.
ContributorsSanchez, Zachary Daniel (Author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133322-Thumbnail Image.png
Description
Each year, the CanSat Competition organizers release aerospace based engineering mission objectives for collegiate teams to compete in. This year, the design is an aerodynamically stable probe that will descend from an altitude of 725 meters at a rate between 10-30 meters/sec until it reaches an altitude of 300 meters,

Each year, the CanSat Competition organizers release aerospace based engineering mission objectives for collegiate teams to compete in. This year, the design is an aerodynamically stable probe that will descend from an altitude of 725 meters at a rate between 10-30 meters/sec until it reaches an altitude of 300 meters, where it will then release a parachute as its aerobraking mechanism as it descends at 5 meters/sec until it reaches the ground. The focus of this paper is to investigate the design of the probe itself and how slender body theory and cross flow drag affect the lift and aerodynamic stability of this bluff body. A tool is developed inside of MATLAB which calculates the slender body lift as well as the lift from the cross flow drag. It then uses that information to calculate the total moment about the center of gravity for a range of angles of attack and free stream velocities. This tool is then used to optimize the geometry of the probe. These geometries are used to construct a prototype and that prototype is tested by a drop test from a 6-story building. The initial tests confirm the calculations that the probe, bluff body, is stable and self-correcting in its descent. Future work involves more high-altitude and ground-level tests that will further verify and improve on the current design.
ContributorsMcCourt, Anthony Michael (Author) / Takahashi, Timothy (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133327-Thumbnail Image.png
Description
This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check

This paper outlines the development of a script which utilizes a series of user-defined input parameters to construct base-level CAD models of aircraft landing gear. With an increased focus on computation development of aircraft models to allow for a rapidprototyping design process, this program seeks to allow designers to check for the validity of design integration before moving forward on systems testing. With this script, users are able to visually analyze the landing gear configurations on an aircraft in both the gear up and gear down configuration. The primary purpose this serves is to determine the validity of the gear's potential to fit within the limited real estate on an aircraft body. This, theoretically, can save time by weeding out infeasible designs before moving forward with subsystem performance testing. The script, developed in Python, constructs CAD models of dual and dual-tandem main landing gear configurations in the CAD program Rhino5. With an included design template consisting of 33 parameters, the script allows for a reasonable trade off between conciseness and flexibility of design.
ContributorsPatrick, Noah Edward (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05