Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
135488-Thumbnail Image.png
Description
This thesis focused on verifying previous literature and research that has been conducted on different spherical objects. Mainly, verifying literature that examines both how surface roughness contributes to the overall drag and how wake turbulence is affected by different surface roughness. The goal of this project is to be able

This thesis focused on verifying previous literature and research that has been conducted on different spherical objects. Mainly, verifying literature that examines both how surface roughness contributes to the overall drag and how wake turbulence is affected by different surface roughness. The goal of this project is to be able to capture data that shows that the flow transition from laminar to turbulent occurs at lower Reynolds numbers for a rough spherical object rather than a perfectly smooth sphere. In order to achieve this goal, both force balance testing and hot-wire testing were conducted in the Aero-lab complex in USE170. The force balance was mounted and used in the larger wind tunnel while the hot-wire probe was mounted and used in the smaller wind tunnel. Both of the wind tunnels utilized LABVIEW software in order to collect and convert the qualitative values provided by the testing probes and equipment. The two main types of testing equipment that were used in this project were the force balance and the hot-wire probe. The overall results from the experiment were inconclusive based on the limitations of both the testing probes and the testing facility itself. Overall, the experiment yielded very limited results due to these limitations.
ContributorsMilroy, Maxwell (Author) / Takahashi, Timothy (Thesis director) / Adrian, Ronald (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135623-Thumbnail Image.png
Description
The aerodynamics of golf club heads effect the forces on the club head throughout the swing. The bluff body geometry and passive flow control elements make the aerodynamics of golf club heads far more complex. The theory behind the geometry of the bluff body aerodynamics relies on the

The aerodynamics of golf club heads effect the forces on the club head throughout the swing. The bluff body geometry and passive flow control elements make the aerodynamics of golf club heads far more complex. The theory behind the geometry of the bluff body aerodynamics relies on the state of the boundary layer and its interaction with the golf club head. Laminar and turbulent boundary layer flow result in drag, but in varying degrees. Separation, or attachment, of the boundary layer in these laminar and turbulent boundary layer flows is part of the cause of the induced drag. Skin friction and pressure drag are the two forms of surface forces which vary according to the state of the boundary layer. To review the state of the boundary layer flow and provide validation data for the corresponding, the golf club head was tested in a wind tunnel. Drag readings from the experiment showed the lowest drag occurred while the club face was perpendicular to the flow from the range of 50 miles per hour to 90 miles per hour. Additionally, the decrease in drag varied greatly depending on the orientation of golf club head. The decrease in the coefficient for the club perpendicular to the flow was approximately 3.99*〖10〗^(-6) C_d/Re while the decrease for the club at 110° was 1.07*〖10〗^(-6) C_d/Re. The general trend of the slopes indicated the pressure drag resulted in major variations while the drag due to skin friction remained relatively constant.
For the testing of the golf club head, two probes were developed to measure the turbulent intensity in the flow. The probes, based on Rossow’s (1993) three probe system, compared the dynamic pressure of the flow with the stream-wise dynamic pressure in the flow. The resultant measurements could then produce the ratio of the cross-stream fluctuations in velocity to the time-averaged velocity. The turbulence intensity calculations would provide insight on the turbulence in the boundary layer flow and wake.
ContributorsBrausch, Matthew James (Author) / Takahashi, Timothy (Thesis director) / Ghods, Sina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05